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This article deals with model comparison as an essential part of generalized linear modelling in the presence
of covariates missing not at random (MNAR). We provide an evaluation of the performances of some of
the popular model selection criteria, particularly of deviance information criterion (DIC) and weighted L
(WL) measure, for comparison among a set of candidate MNAR models. In addition, we seek to provide
deviance and quadratic loss-based model selection criteria with alternative penalty terms targeting directly
the MNAR models. This work is motivated by the need in the literature to understand the performances
of these important model selection criteria for comparison among a set of MNAR models. A Monte Carlo
simulation experiment is designed to assess the finite sample performances of these model selection criteria
in the context of interest under different scenarios for missingness amounts. Some naturally driven DIC
and WL extensions are also discussed and evaluated.

Keywords: penalty; missing not at random; Bayesian inference; non-ignorable missingness model;
identifiability

AMS Subject Classification: 62J12

1. Introduction

Model comparison is an essential stage in the generalized linear model (GLM) analysis in the
presence of ignorably or non-ignorably missing data. As it is well known now in the missing
data literature, missingness is defined by Little and Rubin [1] as being of three types: missing
completely at random, missing at random (MAR), and missing not at random (MNAR). When
the data are MAR, the mechanism that leads to the missingness can be ignored in the analysis. On
the other hand, if the data are believed to be MNAR, then the underlying missingness mechanism
should not be ignored and should be modelled. Since the data at hand inevitably lack information
regarding the underlying mechanism that caused the missingness, the data analyst is bound to con-
sider different ignorable and non-ignorable missingness modelling schemes and use an elaborate
model selection period.

Model comparison criteria such as the deviance information criterion (DIC) [2] and
weighted L (which we will call WL from hereon) measure [3] are extended to GLMs with
missing covariates [4]. Basically, noting that deviance is based on the response data likeli-
hood, the DIC = posterior deviance + (posterior deviance − a point estimate of deviance) and
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WL = (WL measure for subjects with missing covariate data) + (WL measure for subjects with
full data), formal definitions and details of which are presented in Section 3. These criteria are
shown to be performing satisfactorily for comparisons between ignorable missingness models
and non-ignorable missingness models [4]. On the other hand, as strongly pointed out by Ibrahim
et al. [5] and Ibrahim [6], it is dangerous to use any model selection criterion to choose among
an aggregate set of MAR and MNAR models and they are to be used to select among a set of
candidate MAR models or a set of candidate MNAR models. To the best of our knowledge, the
performances of these criteria for comparisons within a class of MNAR models or that of MAR
models are yet to be investigated.

The focus of this article in particular is a GLM with fully observed response and non-ignorably
missing covariates. The GLM framework in the presence of non-ignorably missing covariate
consists of three components: a GLM representing the association between the response and the
covariates (the main model of interest), a model for covariates that are subject to missingness, and
a model for probability of the covariate being missing conditional on the value of the covariate
that would have been observed otherwise (MNAR model). The underlying physical mechanism
that has led to missingness is reflected in the data analysis through the MNAR model. However,
constructing a missingness model that can capture this mechanism is not an easy task as the data at
hand lack sufficient information about the underlying missingness mechanism and henceforth the
missingness model assumptions are not verifiable based on the data set at hand. For that reason,
in practice a model comparison period is to be conducted in which several non-ignorable models
are fit and compared through model comparison measures. Choosing one missingness model
over another can change the main model parameter estimates and thus may result in a different
statistical inference. Therefore, special care is required while considering missingness model
selection period. In this article, we address the following questions. First, how are the performances
of the DIC and WL used for comparisons among non-ignorable missing models? Second, can
we improve the performances of the model selection criteria in this setting by somehow directly
using statistics obtained from the missingness model or by introducing terms directly penalizing
the missingness model?

Our first aim is to carry out an extensive simulation experiment that will portray the finite
sample behaviours of the DIC and WL in the settings of a GLM with covariates that are MNAR.
Both these measures that are employed for model comparison among non-ignorable missingness
models are solely based on the response model likelihood although missingness models are the
focus models in such comparisons. The missingness models are only indirectly involved in the
computation of these criteria. Then, our second aim is to consider an adjustment to each criterion
so that the missingness model is directly involved in the computations. Our third aim is to define
alternative penalizing terms in DIC computation and assess the performance of the resulting
DIC in the context of a GLM with MNAR covariates. The rest of the article is structured as
follows: a GLM setting with covariates subject to MNAR is reproduced in Section 2. Section 2
also highlights modelling considerations in the context of interest. Section 3 describes the DIC
and WL formulations that are readily used in missing data problems as well as our proposed
adjustments to them. In Section 4, a simulation study is presented to evaluate and compare the
performances of the criteria under different settings. Section 5 summarizes the findings, discusses
the theoretical aspects, and indicates direction for future study.

2. Model

Consider a set of independent observations (yi, xi), i = 1, . . . , n, where yi is the response and
xi = (xi1, xi2, . . . , xip) is 1 by p set of covariates for the ith subject. GLMs have been widely used
to model the association between yi and xi. The probability density function (pdf) of yi coming



1672 Z. Kalaylioglu

from a GLM family was given by Nelder and Wedderburn [7] as

p(yi|xi, β) = exp

[
yiθi − b(θi)

ai(τ )
+ c(yi, τ)

]
, (1)

where θi = θ(ηi) is the canonical parameter, τ is the dispersion parameter, and a, b, and c are
known functions. For example, for a Bernoulli random variable Yi, τ = 1 and ai(τ ) = 1. The
systematic component of the model is the linear predictor given by ηi = xiβ and β is the (p + 1)

by 1 vector of unknown regression coefficients including the intercept. When θi = xiβ, the link
is said to be canonical and Model (1) is said to be the canonical-link model. In this case, we can
find a link g so that g(E(Yi|xi)) = xiβ. For example, for a Bernoulli random variable Yi, the link
is the logit link. The parameter vector of focus is β as it is related to the association between the
response variate and the covariates.

Let K be the number of covariates that are subject to MNAR and {k1, k2, . . . , kK} denote the set of
indices of these MNAR covariates. For instance, for an analysis in which X1, X2, and X3 represent
the covariates in the study and (X1,X3) are subject to MNAR and X2 is observed for all the subjects,
K = 2 and {k1, k2} = {1, 3} is the aforementioned set of indices. For the moment, let xi,miss and
xi,obs, respectively, denote the vector of MNAR and fully observed covariates for the ith subject
and let xi = (xi,miss, xi,obs). Also, let ri = (ri,k1 , ri,k2 , . . . , ri,kK ) and ri,kj = I(xi,kj is observed) for
j = 1, . . . , K denote the missingness indicators related to the covariates subject to MNAR for the
ith subject. Also, note that I(·) is a binary indicator function. Then, adapting the selection model
approach, the complete data likelihood of subject i can be broken down to three components as
the joint pdf of the missingness indicators, the pdf of the response variable, and the joint pdf of
the covariates in the following manner:

Ri ∼ p(ri|xi, yi, φ)

Yi ∼ p(yi|xi, β)

Xi,miss ∼ p(xi,miss|xi,obs, α)

(2)

for i = 1, . . . , n, where φ, β, and α are the parameter vectors characterizing the corresponding
probability distributions. For instance, they can be the regression coefficients in each model. The
top model in the hierarchy in selection model (2) is the missingness model, the middle one is the
response model, and the model at the bottom is the covariate model.A model for the missing covari-
ate of the ith subject is needed as the covariate takes up a random nature when it is missing. The joint
distribution of each of the random vectors Ri and Xi,miss can be factorized further into a sequence
of conditional densities [8]. For instance, p(ri|xi, yi, φ) = p(ri,kK |ri,k1 , . . . , ri,kK−1 , xi, yi, φ)

p(ri,kK−1 |ri,k1 , . . . , ri,k(K−2)
, xi, yi, φ) · · · p(ri,k2 |ri,k1 , xi, yi, φ)p(ri,k1 |xi, yi, φ) where φ, j = 1, . . . , K is

the vector of associated regression coefficients. As ri,kj is a binary indicator variable, each condi-
tional piece herein can be suitably modelled using a logistic or a probit regression approach. For
an MNAR covariate, the linear predictor in its missingness model is necessarily a function of the
covariate itself.

Unlike the response or the covariate models, the beliefs that are employed to construct the
missingness models are unfortunately unverifiable by the data at hand, with the reason simply being
that there is no sufficient information in the data set concerning the underlying mechanism that
led to the missingness. As a result, the missingness model parameters may become unidentifiable
if a larger missingness model is built. Therefore, in practice, analyses in the presence of non-
ignorably missing data entail a model comparison period in which non-ignorable missingness
models of different complexity are fit in Model (2). This way the sensitivity of β estimates (the main
parameters of interest) to the missingness model structure is investigated and missingness models
from which the identifiability issue arises are determined and eliminated for further inferential
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considerations. Since missingness model parameters can easily become unidentifiable, one needs
to be meticulous in the model selection process.All these considerations imply that model selection
criteria that are employed play an important role. In a broader sense, the study reported in [9] is
an example for the necessity of taking account of this intertwining relationship of missing data
and model selection in the analyses.

From an application standpoint, a model comparison period in general aims at one of the
following: comparing selection models (by selection model, we mean Model (2) as a whole) with
different non-ignorable missingness models and the same response and covariate models or com-
paring selection models with different response models and the same non-ignorable missingness
model. The focus model in the first one is the missingness model, whereas in the latter one it is
the response model. In this article, we focus on the first one, that is, comparisons of the selection
models with different non-ignorable missingness models and the same response model.

3. Bayesian model selection criteria

We consider Bayesian model selection criteria, in particular, the DIC [2] and WL measure [3] that
were originally developed for fully observed data. The DIC is based on the deviance function,
whereas the WL measure is based on the quadratic loss function. Huang et al. [4] extended these
measures to a GLM with missing covariates and investigated their performance for selecting the
correct missigness model when the comparison was made between a non-ignorable missingness
model and an ignorable one. In the subsequent parts, along with their DIC and WL measure,
we reckon the variations of these criteria that were designed specifically for non-ignorable
missingness model comparisons.

3.1. Criteria based on deviance

The underlying formulation of the DIC can be stated by the following simple combination:

DIC = posterior deviance + penalty,

where the deviance and posterior deviance for a fully observed data set are, respectively,

D(θ) = −2 log L(θ|Y , X) and ̂D(θ) = E(−2 log L(θ|Y , X)|Y , X), where L(θ|Y , X) is the likeli-
hood function. In the presence of missing data, the deviance can take different forms depending
on the form of the likelihood function. In the case of data MAR, such alternative formulations of
DIC are considered and evaluated in random-effect models and mixtures of distributions [10].

In the presence of missing covariates, Huang et al. [4] reexpressed the deviance conveniently as

a function of the linear predictor η = (η1, . . . , ηn)
T, that is, D(η) = −2 log L(η|Y , X) and ̂D(η) =

E(−2 log L(η|Y , X)|Y , Xobs, R), where Y = (Y1, Y2, . . . , Yn)
T, R = (RT

1 , RT
2 , . . . , RT

n )T, Xobs are
the observed covariate data and L(η|Y , Xobs) is the observed likelihood function for the response
model (middle model) in Equation (2). They penalized the model for model complexity using

the penalty component defined by ̂D(η) − D(η̂) in which η̂ = (η̂1, . . . , η̂n)
T, where η̂i’s are the

posterior means of XT
i β’s and η̂i = E(XT

i β|Y , Xobs, R) for i = 1, . . . , n. Letting Dobs = (Y , Xobs, R)

denote the observed data, the first type of DICs that will be investigated in this study for its ability
of selecting the selection model with the true non-ignorable missingness model is

DIC1 = E(−2 log L(η|Y , Xobs)|Dobs) + penalty1,

where penalty1 = ̂D(η) − D(η̂) penalizing for model complexity.
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In non-ignorably missing data situations, there is a vagueness in the target model that the
penalty term is aiming to penalize. The aim of the penalty, whether it is to penalize the selection
model in its entirety or just the missingness part, needs to be pinpointed. In this spirit, Mason
et al. [11] developed for univariate data subject to MNAR two separate DIC strategies, one of
which is for comparing selection models with different missingness models but with the same
response model and the other is for comparing selection models with different response models
but with the same missingness model. Since our interest currently lies in the comparison among
selection models with the same response and covariate model but with different non-ignorable
missingness models, the missingness model should, in particular, be penalized. In pursuit of this
idea, a natural approach is to define a penalty term penalizing the missingness model for its
possible shortcomings and thus the following DICs are proposed:

DIC2 = E(−2 log L(η|Y , X)|Dobs) + penalty2,

DIC3 = E(−2 log L(η|Y , X)|Dobs) + penalty3,
(3)

where the terms penalty2 and penalty3 penalize the missingness models for the identifiability
problem and are defined as

penalty2 =
K∑

k=1

|ĪR(φ̂k)|−1,

penalty3 =
K∑

k=1

‖ĪR(φ̂k)‖‖Ī−1
R (φ̂k)‖,

(4)

where the notations | · | and ‖ · ‖ are, respectively, the determinant and norm of a matrix. Here,
K is the number of covariates subject to MNAR as stated earlier and φ̂k is the vector of the
estimated regression coefficients of the kth missingness model. For instance, in the case of two
MNAR covariates, K = 2, φ̂1 and φ̂2 are the estimated coefficient vectors in the logistic (probit)
regressions for P(Ri1 = 1|·) and P(Ri2 = 1|Ri1, ·), respectively, where the dot in the conditional
part represents other covariates or the response variate that might take part. These penalties are
based on ĪR(φ̂k), k = 1, . . . , K , which is the estimated average observed Fisher information matrix
for the missingness model corresponding to the kth MNAR covariate. More explicitly,

ĪR(φ̂k) = − ∂2

∂φk ∂φT
k

1

n
log L(φk|Dobs, Xmiss),

which is based on the complete data likelihood function for the missingness model evaluated

at the posterior means φ̂k = E(φk|Dobs) and ̂xT
i φk = E(xT

i φk|Dobs) for i = 1, . . . , n. When xi is

completely observed, ̂xT
i φk = xT

i E(φk|Dobs) for i = 1, . . . , n.
In designing these penalties, we are motivated by the fact that the local identifiability of the

parameters is equivalent to the non-singularity of the information matrix [12]. This condition
for local identifiability is also employed as a first step towards checking the identifiability of
non-ignorable models for incomplete binary responses [13]. The penalty named as penalty3 is the
condition number for the information matrix, a large value (an ill-conditioned matrix) implying
an almost-singular matrix. Both penalty2 and penalty3 penalize the missigness models for the
proximity of the associated information matrix to singularity. The rationale behind these propos-
als stemmed from the reasoning that missingness models are the focus in sensitivity analyses
conducted on various different selection models with different missingness models and the same
response and covariate models and thus the missingness model should contribute to the compari-
son criteria directly. In spite of the sound conceptual argument, the performances of the proposed
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DICs, namely DIC2 and DIC3, were mediocre in our simulation experiments and therefore will
not be pursued in this article, but will be pursued for a possible improvement in a separate study.

The above notion is also adopted to develop a deviance-based criterion penalizing the response
model for the identifiability issue in terms of the inverse-observed Fisher information matrix. It
turns out that using the inverse-Fisher information matrix as a penalty term in deviance-based
criteria was also considered in greater detail for non-missing data situations in [14] and other
Bozdogan references therein. The proposed DICs are as follows:

DIC4 = E(−2 log L(η|Y , X)|Dobs) + penalty4

DIC5 = E(−2 log L(η|Y , X)|Dobs) + penalty5

(5)

with

penalty4 = |ĪY (β̂)|−1

penalty5 = ‖ĪY (β̂)‖‖Ī−1
Y (β̂)‖,

(6)

where β̂ and ĪY (β̂) are, respectively, the vector of the estimated regression coefficients and the
estimated average observed Fisher information matrix of the response model. More explicitly,

ĪY (β̂) = − ∂2

∂β∂βT

1

n
log L(β|Y , Xobs, Xmiss),

which is based on the complete data likelihood function for the response model evaluated at the
posterior means β̂ = E(β|Dobs) and x̂T

i β = E(xT
i β|Dobs) for i = 1, . . . , n. When xi is completely

observed, ̂xT
i φk = xT

i E(φk|Dobs) for i = 1, . . . , n.

3.2. Criteria based on the quadratic loss function

Weighted quadratic loss L measure is based on weighting the observations and assessing the
models through the prediction abilities of the models [3]. Huang et al. [4] extended the WL
measure to a GLM with missing covariates in the following manner:

WL1 = WL1,miss + WL1,obs,

where WL1,miss and WL1,obs are the WL measures computed based on subjects with at least one
missing covariate and the subjects with fully observed data, respectively, and defined as

WL1,miss = ν
∑

{i:i∈Amiss}
w1,i(μi − yi)

2 +
∑

{i:i∈Amiss}
w1,i Var(zi|yi)

WL1,obs = ν
∑

{i:i∈Aobs}
w1,i(Eβ|Dobs(b

′(θi)) − yi)
2

+
∑

{i:i∈Aobs}
w1,i[Eβ|Dobs(b

′′(θi)) − {Eβ|Dobs(b
′(θi))}2 + Eβ|Dobs(b

′(θi)
2)],

(7)

where Amiss is the set of subjects with at least one missing covariate value, Aobs is the set of subjects
whose covariate data are fully observed, w1,i is the weight function and is equal to 1/b′′(θ(wx̂T

i β))

for the members of Amiss and it is 1/b′′(θ(wxT
i β̂)) for the members of Aobs, 0 ≤ w ≤ 1, 0 < ν < 1,

b′(·) and b′′(·) are, respectively, the mean and variance functions of the response GLM in Model (1),
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zi is a future response for the ith subject in a replicate experiment having the same sampling density
of yi, and μi = E(zi|Dobs). In this formula, the prediction variance term plays the role of a penalty
term. Each of these quantities is estimated using the posterior expectations approximated by
the sample path average of the associated Markov chain once the samples from the posterior
distribution are obtained. The details of the estimation procedure have been laid out previously
in the literature and can be found in, for example, [4]. The performance of this measure in
the comparison of the selection models with MAR models and those with MNAR models was
investigated therein. The performance of the measure for comparison among a family of selection
models with different non-ignorable missingness models is yet to be investigated. In the current
article, we explore this issue.

The above formulation is solely based on the response model. Since the model of focus in
model comparisons in this article is associated with the missingness part, one would naturally be
curious to know if the WL measure can be adjusted so that the missingness model has a direct
effect on the WL outcome and how well the adjusted WL measure would perform in comparing
the selection models with different non-ignorable missingness models. As an adjustment, subjects
that are substantially influenced by the badness of fit of the missingness model are proposed to
be assigned more weight in WL computations. Towards this end, subjects are weighted according
to the magnitude of their absolute residual from the regression model predicting the missingness
probability (i.e. the missingness model). The motivation for this choice of weight function stems
from the need for quantifying and evaluating the effect of problematic missingness model fit on
the prediction qualities of the response model and comparing the selection models by taking this
information into account. The proposed WL measure is as follows:

WL2 = WL2,miss + WL2,obs,

where WL2,miss and WL2,obs are the WL measures computed based on subjects with at least one
missing covariate and subjects with fully observed data, respectively, and defined as

WL2,miss = ν
∑

{i:i∈Amiss}
w2,i(μi − yi)

2 +
∑

{i:i∈Amiss}
w2,i Var(zi|yi)

WL2,obs = ν
∑

{i:i∈Aobs}
w2,i(Eβ|Dobs(b

′(θi)) − yi)
2

+
∑

{i:i∈Aobs}
w2,i[Eβ|Dobs(b

′′(θi)) − {Eβ|Dobs(b
′(θi))}2 + Eβ|Dobs(b

′(θi)
2)].

(8)

Here, the weight function w2,i is based on Pearson’s residual and defined as follows:

w2,i =
K∑

k=1

|ri,kj − E(ri,kj |Dobs)|√
Var(rij ,k|Dobs)

,

where ri,kj is the binary missingness indicator associated with the MNAR covariate kj for subject i as

described earlier and E(ri,k|Dobs) is estimated by �(wx∗T
ij φ̂j) for subjects with fully observed data

and by �(wx̂∗T
ij φ

j
) for subjects who have at least one missing covariate. Here, �(·) is the standard

normal cumulative distribution function, x∗T
ij is the vector of explanatory variables involved in

missingness model kj (it may include the response variate and other missingness indicators in
addition to the MNAR covariate xkj itself), and φ̂j is the estimated coefficient in missingness

model kj and obtained as E(φj|Dobs), that is, the posterior expectation of φj. Similarly, ̂x∗T
ij φj

is obtained as E(x∗T
ij φj|Dobs), that is, the sample path average of the Markov chain constructed
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for x∗T
ij φj. Also, Var(ri,kj |Dobs) is estimated by �(wx∗T

ij φ̂j)(1 − �(wx∗T
ij φ̂j)) and �(wx̂∗T

ij φ
j
)(1 −

�(wx̂∗T
ij φ

j
)), respectively, for subjects with fully observed data and subjects with at least one

missing covariate. Basically, w2,i is the amount of residuals accumulated over the K missingness
models for subject i and thus can be regarded as a measure for the overall badness of fit of the
non-ignorable missingness model structure for subject i.

The computation of the DIC is based on the posterior deviance and the computation of the
WL measure is based on the bias and the sampling variance of the prediction. They possess
attractive computational properties in both non-missing and missing data situations: they can be
calculated using the output of the Markov chain Monte Carlo (MCMC) machinery that is used
for the Bayesian analysis. Their computation can be automated with the addition of a couple of
lines in a WinBUGS code that performs the Bayesian estimation using the MCMC technique and
a code written in, for example, R or Matlab as a back-end to process the associated MCMC output
into these measures.

4. Simulation study

In this section, we investigate and evaluate the performances of the DIC and the WL measure
proposed by Huang et al. [4] and the intrinsically determined versions of these criteria as proposed
in Section 3. Two metrics are used to evaluate the performances: (1) the average criterion value
and (2) the percentage of times the criterion inferred to the true missingness model. We consider
an always-observed binary response variable, y, and a logistic regression to model its dependence
on the two covariates x1 and x2. For all our simulations, we generated n = 250 independent
response variates from the model logit(P(Yi = 1|xi1, xi2)) = β0 + β1xi1 + β2xi2, where Xi1’s are
independently and identically generated from Normal(α11, α12) and Xi2’s are the dichotomous
random variables generated from Bernoulli(pi) with logit(pi) = α21 + α22xi1. The true values of
the parameters are set at β = (β0, β1, β2)

T = (1, 1, −0.5)T, α1 = (α11, α12)
T = (0.5, 0.25)T, and

α2 = (α21, α22)
T = (1, −1)T. Two scenarios are considered in terms of the number of covariates

subject to MNAR. The first scenario assumes that only one covariate, namely x1, is subject to
MNAR and the covariate x2 is fully observed. In the second scenario, both are assumed to be subject
to being non-ignorably missing. For each scenario, three distinct sets of simulation experiments
are carried out. In the first set of experiments, the true missingness mechanism is taken to be M1.
That is, missingness indicators for MNAR covariates are generated from Bernoulli distributions
with the probability of missingness as given in M1. Similarly, for the second and third sets of
experiments, the true missingness mechanisms are taken to be M2 and M3, respectively, and the
missingness indicators are simulated accordingly. Two different missingness proportions, namely
15% and 25%, are considered for each set of experiments. For the first scenario below, these are
the proportions of subjects in the data set with missing x1, whereas for the second one, they are
the proportions of subjects who are missing at least one of the two covariate data. In the GLM
analysis part of each experiment, three different missingness models are assumed and model
comparison is conducted over a set of candidate selection models consisting of the same response
and covariate models but different non-ignorable missingness models, namely M1, M2, or M3.
Probit regressions are used in the analyses to model these non-ignorable missingness models.

One hundred data sets are simulated for each scenario. For the Bayesian analysis of each
simulated data set, we used improper uniform priors for the regression coefficients and the location
parameters, namely β, α2, and α11, as suggested in [4]. For these priors, the propriety of the joint
posterior distribution and the conditions under which the propriety is satisfied are given in the
same article. For the scale parameter α12, the inverse of Gamma(0.01, 0.01) prior is used. A robust
Multivariate Normal prior is used for (φ1,φ2)where the hyperparameters, namely the mean vectors
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and the variance–covariance matrices, are obtained based on an empirical Bayes approach [4].
In the empirical Bayes procedure, we set the coefficient that accounts for the randomness of the
procedure at 1000. As shown in [4] simulation wise, the DIC and the WL measure are robust to
the choice of this quantity. In order to derive the posterior inferences, we employed the Gibbs
sampling scheme described in [4], in which a vector of latent variables is introduced for each
Ri (a technique introduced by Albert and Chib [15]). WinBUGS 1.4.3 is used to carry out the
Gibbs sampling and hence obtain the posterior distributions. Other Bayesian technicalities are as
follows: the period of the first 2000 iterations is used as burn-in. Further 200,000 iterations are
run and every 10th of them is used for posterior inference. The convergence of the distributions
of the full conditional draws to the target distributions is confirmed by various diagnostic tools.
Autocorrelation plots ensure that the dependence of a draw from a full conditional density upon
the previous draws vanishes satisfactorily. The Brooks–Gelman–Rubin statistic [16] ensures that
the mean of each chain is a satisfactory approximation to the corresponding posterior expectation.

4.1. Scenario I: one covariate subject to MNAR

The non-ignorable missingness models considered are as follows:

M1 : P(Ri1 = 1) = �(φ10 + φ11xi1)

M2 : P(Ri1 = 1) = �(φ10 + φ11xi1 + φ12xi2 + φ13yi)

M3 : P(Ri1 = 1) = �(φ10 + φ11xi1 + φ12xi2 + φ13yi + φ14xi1yi),

(9)

where �(·) is the standard Normal cumulative distribution function. Each model is
nested in the succeeding model, that is, M1 ⊂ M2 ⊂ M3. The dimensions of the param-
eter space of these models are 2, 4, and 5, respectively. Let φ1 be the true coefficient
vector for model P(Ri1 = 1). For M1, φ1 = (φ10, φ11)

T = (0.4, 2.5)T corresponds to 15%
and φ1 = (φ10, φ11)

T = (, )T corresponds to 25% missingness. For M2, φ1 = (φ10, φ11)
T =

(0.5, −1.5, 1.1, 1.45)T corresponds to 15% and φ1 = (φ10, φ11)
T = (, )T corresponds to 25%. For

M3, φ1 = (φ10, φ11)
T = (−0.6, −0.7, 0.8, 2.2, 2.0)T correspond to 15% and φ1 = (φ10, φ11)

T =
(−1.45, −0.7, 0.8, 2.2, 2.0)T correspond to 25% missingness. This scenario is representative of
the situations where only a single dimension of the covariate space is subject to MNAR.

4.2. Scenario II: both covariates subject to MNAR

The non-ignorable missingness models considered are as follows:

M1 : P(Ri1 = 1) = �(φ10 + φ11xi1)

P(Ri2 = 1) = �(φ20 + φ21xi2)

M2 : P(Ri1 = 1) = �(φ10 + φ11xi1 + φ12xi2 + φ13yi)

P(Ri2 = 1) = �(φ20 + φ21xi1 + φ22xi2 + φ23yi + φ24ri1)

M3 : P(Ri1 = 1) = �(φ10 + φ11xi1 + φ12xi2 + φ13yi + φ14xi1yi)

P(Ri2 = 1) = �(φ20 + φ21xi1 + φ22xi2 + φ23yi + φ24ri1 + φ25xi2yi),

(10)

with �(·) representing the standard Normal cumulative distribution function. The dimensions
of the parameter space of these models are 4, 9, and 11 respectively. Let φ1 and φ2 be the
true coefficient vectors for models P(Ri1 = 1) and P(Ri2 = 1), respectively, used in missingness
indicator generation. For M1, φ1 = (φ10, φ11)

T = (0.4, 2.5)T and φ2 = (φ20, φ21)
T = (2.3, 2.5)T
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correspond to 15% and φ1 = (φ10, φ11)
T = (0.4, 2.5)T and φ2 = (φ20, φ21)

T = (0.5, 2.5)T

correspond to 25% missingness. For M2, φ1 = (φ10, φ11, φ12, φ13)
T = (0.5, −0.7, 0.8, 2.2)T

and φ2 = (φ20, φ21, φ22, φ23, φ24)
T = (1.5, −1.2, 1.0, 0.3, −0.1)T correspond to 15% and φ1 =

(φ10, φ11, φ12, φ13)
T = (0.5, −1.0, 1.2, 1.5)T and φ2 = (φ20, φ21, φ22, φ23, φ24)

T = (1.2, −1.0, 1.0,
0.3, −0.5)T correspond to 25% missingness. For M3, φ1 = (φ10, φ11, φ12, φ13, φ14)

T =
(−0.05, 1.9, 0.8, 2.2, 2.0)T and φ2 = (φ20, φ21, φ22, φ23, φ24, φ25)

T = (1.6, −1.2, 1.0, 0.3, −0.1,
0.2)T correspond to 15% and φ1 = (φ10, φ11, φ12, φ13, φ14)

T = (−0.45, −0.7, 0.8, 2.2, 2.0)T and
φ2 = (φ20, φ21, φ22, φ23, φ24, φ25)

T = (1.3, −1.2, 1.0, 0.3, −0.1, 0.2)T correspond to 25% miss-
ingness. The case where the true missingness mechanism is M2 and the missingness amount
is 25% is the same scenario studied by Huang et al. [4]. In the tables that follow, DIC1 and WL1

results corresponding to (missingness = 25%, true missingness model = M2) are thus comparable
to their results.

4.3. Results

The box plots of the posterior means of β are constructed based on 100 simulated data sets. Only
the ones corresponding to scenario II with 25% missingness are shown in Figures 1–3 as they
provide a fairly good representation of the other situations considered herein. In each plot, a line
across the true parameter value is drawn for convenience.According to the results, the inference on
the intercept is insensitive to the assumed missingness modelling structure, whereas the inference
on the coefficients associated with the covariates is affected by it. The three figures together imply
that the posterior mean of β2, that is, the coefficient associated with the binary covariate subject
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Figure 1. Box plots of the posterior means of β0, β1, and β2 (25% missingness). The true missingness model is M1.
Two MNAR covariates.
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Figure 2. Box plots of the posterior means of β0, β1, and β2 (25% missingness). The true missingness model is M2.
Two MNAR covariates.

to MNAR (X2), is quite close to the true coefficient value when the assumed missingness model
coincides with the true missingness model. On the other hand, the posterior mean of β1, that is,
the coefficient associated with the continuous covariate subject to MNAR (X1), is closest to its
true value when the assumed missingness model is the most saturated one in the set of candidate
missingness models, namely M3. In a simulation experiment, we found that this occurs when
a highly non-informative prior such as the inverse of Gamma(0.01, 0.01) is used for the scale
parameter α12 for which extreme values may be sampled for missing Xi1’s in the Gibbs sampling.
This may also explain the low coverage probability of the 95% highest posterior density interval
for β1 that was observed by Huang et al. [4].

The sensitivity of posterior inference to the assumed missingness model is also observed for
15% missingness, but to a much lesser extent, implying that the posterior inference on β is rather
robust to the underlying true missingness mechanism when the proportion of subjects with missing
covariate information is moderate.

The results of the performances of the model selection criteria under scenarios I and II are
presented in Tables 1–10 and 11–20, respectively. As the results are uniform over the scenarios
and the missingness percentages, the following observations hold for all the scenarios considered.
Tables 1 and 11 present the averages of deviance, penalty1, penalty4, penalty5, DIC1, DIC4, and
DIC5 over 100 Monte Carlo replications. According to the results, deviance, penalty5, DIC1, and
DIC5 unequivocally yield the smallest values when M1 is used in the analysis regardless of the
true missingness model. This indicates that these criteria have a tendency for pointing to a smaller
missingness model structure no matter what the true missingness structure is. On the other hand,
overall, penalty1, penalty4, and DIC4 tend to point to the largest missingness model structure.
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Figure 3. Box plots of the posterior means of β0, β1, and β2 (25% missingness). The true missingness model is M3.
Two MNAR covariates.

Table 1. Monte Carlo averages of the deviance, penalty, and DIC estimates.

True Fitted
Missing model model Deviance penalty1 penalty4 penalty5 DIC1 DIC4 DIC5

15% M1 M1 265.50 5.25 7648.14 23.35 270.75 7913.64 288.85
M2 267.22 4.84 7125.20 23.51 272.06 7392.41 290.73
M3 267.97 5.51 7000.92 23.77 273.48 7268.89 291.73

M2 M1 248.27 7.43 8483.06 14.84 255.71 8731.33 263.12
M2 251.58 6.96 8133.66 15.68 258.54 8385.24 267.25
M3 256.30 6.99 7382.59 15.89 263.29 7638.89 272.19

M3 M1 188.82 15.50 19,634.75 13.55 204.31 19,823.57 202.36
M2 245.38 13.44 8966.56 17.90 258.82 9211.95 263.29
M3 243.86 15.67 9165.05 17.91 259.52 9408.91 261.77

25% M1 M1 265.25 6.54 9163.54 28.23 271.79 9428.79 293.48
M2 267.82 5.67 8273.73 28.76 273.49 8541.55 296.58
M3 267.59 7.33 8258.50 29.33 274.92 8526.09 296.93

M2 M1 226.46 32.77 16,659.95 20.35 259.23 16,886.40 246.81
M2 245.82 24.02 16,065.53 21.74 269.84 16,311.35 267.56
M3 234.59 35.59 21,313.20 21.80 270.18 21,547.79 256.39

M3 M1 149.77 28.21 86,650.57 25.47 177.98 86,800.34 175.24
M2 224.45 27.52 17,765.98 20.46 251.97 17,990.43 244.92
M3 239.53 26.88 13,151.84 23.97 266.41 13,391.37 263.51

Note: One MNAR covariate.
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Table 2. Monte Carlo averages of the WL estimates (15% missingness).

WL w Fitted model ν = 0.2 ν = 0.4 ν = 0.5 ν = 0.6 ν = 0.8

WL1 0.4 M1 221.99 258.34 276.52 294.69 331.05
M2 223.23 259.91 278.24 296.58 333.26
M3 224.27 260.94 279.27 297.61 334.27

0.5 M1 229.38 266.92 285.69 304.45 341.99
M2 230.58 268.41 287.33 306.25 344.08
M3 231.60 269.41 288.32 307.22 345.03

0.6 M1 238.86 277.92 297.44 316.97 356.03
M2 239.97 279.29 298.94 318.60 357.92
M3 240.96 280.23 299.86 319.50 358.77

WL2 0.4 M1 43.88 51.12 54.74 58.36 65.60
M2 42.93 50.27 53.94 57.60 64.94
M3 42.64 49.81 53.40 56.99 64.16

0.5 M1 42.37 49.38 52.88 56.38 63.39
M2 41.16 48.25 51.79 55.34 62.43
M3 40.74 47.63 51.08 54.52 61.41

0.6 M1 41.09 47.90 51.30 54.71 61.51
M2 39.63 46.50 49.94 53.37 60.25
M3 39.09 45.72 49.04 52.36 58.99

Notes: The true missingness model is M1. One MNAR covariate.

Table 3. Monte Carlo averages of the WL estimates (25% missingness).

WL w Fitted model ν = 0.2 ν = 0.4 ν = 0.5 ν = 0.6 ν = 0.8

WL1 0.4 M1 222.50 258.58 276.62 294.65 330.73
M2 242.02 260.81 279.11 297.41 334.02
M3 224.96 261.27 279.42 297.58 333.89

0.5 M1 229.89 267.11 285.72 304.34 341.56
M2 231.53 269.26 288.13 306.99 344.73
M3 232.35 269.78 288.49 307.20 344.62

0.6 M1 239.36 278.04 297.39 316.73 355.42
M2 240.87 280.04 299.63 319.22 358.39
M3 241.79 280.63 300.05 319.47 358.31

WL2 0.4 M1 48.30 56.19 60.14 64.09 71.98
M2 47.57 55.59 59.59 63.60 71.61
M3 47.04 54.77 58.63 62.50 70.22

0.5 M1 47.55 55.33 59.22 63.11 70.88
M2 46.57 54.45 58.40 62.34 70.23
M3 45.88 53.42 57.20 60.97 68.52

0.6 M1 46.91 54.59 58.43 62.27 69.96
M2 45.62 53.46 57.34 61.23 69.00
M3 44.83 52.22 55.91 59.60 66.99

Notes: The true missingness model is M1. One MNAR covariate.

Tables 2–7 and 12–17 present the simulation results of the WL measures for scenarios I and II,
respectively. In all the tables, we can see that M1 consistently yields the smallest WL1, whereas
M3 yields the smallest WL2 regardless of w and ν. This implies that WL1 displays a consistent
tendency towards selecting the smallest missingness model, whereas WL2 consistently selects
the largest missingness model. The results demonstrate that the behaviour of the WL measure is
sensitive to the choice of the weight function.
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Table 4. Monte Carlo averages of the WL estimates (15% missingness).

WL w Fitted model ν = 0.2 ν = 0.4 ν = 0.5 ν = 0.6 ν = 0.8

WL1 0.4 M1 208.63 242.22 259.02 275.81 309.40
M2 211.19 245.29 262.34 279.40 313.50
M3 215.24 249.97 267.34 284.71 319.45

0.5 M1 216.66 251.37 268.73 286.09 320.80
M2 219.13 254.32 271.92 289.25 324.71
M3 223.02 258.84 276.75 294.66 330.48

0.6 M1 227.15 263.31 281.39 299.48 335.64
M2 229.45 266.05 284.35 302.65 339.25
M3 233.08 270.29 288.89 307.50 344.71

WL2 0.4 M1 40.84 47.52 50.85 54.19 60.87
M2 37.43 43.83 47.02 50.22 56.62
M3 37.45 43.97 47.23 50.49 57.01

0.5 M1 39.39 45.84 49.06 52.29 58.73
M2 35.35 41.44 44.49 47.54 53.64
M3 35.17 41.38 44.48 47.59 53.80

0.6 M1 38.14 44.39 47.52 50.64 56.89
M2 33.58 39.42 42.34 45.25 51.09
M3 33.22 39.16 42.13 45.09 51.04

Notes: The true missingness model is M2. One MNAR covariate.

Table 5. Monte Carlo averages of the WL estimates (25% missingness).

WL w Fitted model ν = 0.2 ν = 0.4 ν = 0.5 ν = 0.6 ν = 0.8

WL1 0.4 M1 204.47 231.33 244.75 258.18 285.03
M2 216.10 246.85 262.23 277.60 308.35
M3 213.95 241.99 256.02 270.04 298.09

0.5 M1 214.76 242.58 256.49 270.41 298.24
M2 225.17 256.77 272.57 288.37 319.97
M3 225.28 254.19 268.64 283.09 312.00

0.6 M1 228.43 257.54 272.09 286.64 315.75
M2 237.00 269.69 286.03 302.38 335.06
M3 240.49 270.52 285.53 300.54 330.57

WL2 0.4 M1 41.95 47.56 50.37 53.17 58.79
M2 41.90 47.87 50.85 53.83 59.80
M3 39.70 44.92 47.53 50.14 55.37

0.5 M1 41.00 46.49 49.24 51.98 57.47
M2 40.45 46.20 49.07 51.94 57.68
M3 38.08 43.06 45.55 48.05 53.03

0.6 M1 40.17 45.56 48.26 50.95 56.34
M2 39.22 44.77 47.55 50.33 55.87
M3 36.69 41.46 43.85 46.24 51.02

Notes: The true missingness model is M2. One MNAR covariate.

We also examined what percentage of time that these criteria point to the true missingness
model. This is calculated by ((number of times the criterion was smallest for the true missingness
model)/100) and the results are given in Tables 8–10 and 18–20 for scenarios I and II, respectively.
Our simulation results show that when comparison is made among a set of selection models with
non-ignorable missingness models, the abilities of the criteria for selecting the true MNAR model
are quite unsatisfactory.
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Table 6. Monte Carlo averages of the WL estimates (15% missingness).

WL w Fitted model ν = 0.2 ν = 0.4 ν = 0.5 ν = 0.6 ν = 0.8

WL1 0.4 M1 162.20 186.52 198.67 210.83 235.15
M2 209.05 240.99 256.95 272.92 304.85
M3 209.17 240.64 256.37 272.10 303.57

0.5 M1 172.30 198.34 211.37 224.39 250.43
M2 217.21 250.01 266.42 282.82 315.63
M3 217.64 250.00 266.19 282.37 314.73

0.6 M1 186.40 214.89 229.15 243.39 271.89
M2 227.92 261.86 278.83 295.80 329.74
M3 228.83 262.36 279.12 295.88 329.40

WL2 0.4 M1 29.99 34.39 36.58 38.78 43.17
M2 28.69 34.38 37.22 40.06 45.75
M3 27.76 33.22 35.96 38.69 44.16

0.5 M1 28.67 32.85 34.95 37.04 41.23
M2 26.07 31.50 34.21 36.92 42.34
M3 25.09 30.27 32.86 35.45 40.63

0.6 M1 27.45 31.45 33.45 35.45 39.45
M2 23.96 29.16 31.76 34.36 39.56
M3 22.93 27.87 30.34 32.81 37.75

Notes: The true missingness model is M3. One MNAR covariate.

Table 7. Monte Carlo averages of the WL estimates (25% missingness).

WL w Fitted model ν = 0.2 ν = 0.4 ν = 0.5 ν = 0.6 ν = 0.8

WL1 0.4 M1 137.75 155.62 164.56 173.50 191.37
M2 198.76 225.86 239.41 252.95 280.04
M3 212.15 241.80 256.62 271.44 301.09

0.5 M1 150.53 170.76 180.87 190.98 211.21
M2 208.17 235.91 249.79 263.66 291.41
M3 222.41 252.90 268.14 283.38 313.86

0.6 M1 169.22 193.11 205.06 217.00 240.89
M2 221.15 249.75 264.04 278.34 306.94
M3 236.84 268.41 284.20 299.98 331.56

WL2 0.4 M1 25.73 28.93 30.52 32.12 35.31
M2 31.93 36.73 39.14 41.54 46.34
M3 31.40 36.12 38.47 40.83 45.55

0.5 M1 24.89 28.00 29.55 31.11 34.21
M2 29.61 34.14 36.40 38.66 43.18
M3 28.53 32.86 35.03 37.20 41.53

0.6 M1 24.13 27.16 28.67 30.18 33.21
M2 27.65 31.93 34.07 36.21 40.49
M3 26.08 30.09 32.10 34.10 38.12

Notes: The true missingness model is M3. One MNAR covariate.

Table 8. The proportion of time the correct model is selected.

Missing True model Deviance penalty1 penalty4 penalty5 DIC1 DIC4 DIC5

15% M1 0.76 0.04 UA 0.66 0.87 UA 0.82
M2 0.11 0.55 0.09 0.13 0.11 0.09 0.12
M3 UA 0.15 0.46 0.03 UA 0.46 UA

25% M1 0.67 0.02 UA 0.70 0.85 UA 0.77
M2 UA 0.94 0.46 0.19 UA 0.45 UA
M3 0.01 0.47 0.70 0.02 UA 0.70 0.02

Notes: One MNAR covariate. UA, unable to select the model framework with the correct missingness model.
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Table 9. The proportion of time the correct model is selected.

WL w True model ν = 0.2 ν = 0.4 ν = 0.5 ν = 0.6 ν = 0.8

WL1 0.4 M1 0.83 0.82 0.81 0.80 0.77
M2 0.11 0.12 0.12 0.12 0.12
M3 UA UA UA UA UA

0.5 M1 0.85 0.94 0.94 0.95 0.94
M2 0.12 0.12 0.12 0.12 0.11
M3 UA UA UA UA UA

0.6 M1 0.85 0.83 0.80 0.78 0.73
M2 0.13 0.13 0.12 0.12 0.09
M3 UA UA UA UA UA

WL2 0.4 M1 UA 0.02 0.02 0.02 0.04
M2 0.56 0.59 0.61 0.60 0.64
M3 0.51 0.45 0.43 0.39 0.34

0.5 M1 UA UA UA 0.01 0.02
M2 0.41 0.53 0.54 0.55 0.58
M3 0.68 0.57 0.55 0.51 0.45

0.6 M1 UA UA UA UA UA
M2 0.30 0.43 0.46 0.51 0.53
M3 0.73 0.71 0.66 0.60 0.53

Notes: Missingness is 15%. One MNAR covariate.

Table 10. The proportion of time the correct model is selected.

WL w True model ν = 0.2 ν = 0.4 ν = 0.5 ν = 0.6 ν = 0.8

WL1 0.4 M1 0.79 0.74 0.73 0.70 0.65
M2 UA UA UA UA UA
M3 UA UA UA UA UA

0.5 M1 0.82 0.90 0.91 0.93 0.93
M2 UA UA UA UA UA
M3 UA 0.01 0.01 0.01 0.02

0.6 M1 0.85 0.76 0.72 0.72 0.65
M2 UA UA UA UA UA
M3 UA UA UA UA UA

WL2 0.4 M1 0.02 0.03 0.03 0.04 0.04
M2 0.09 0.08 0.07 0.07 0.05
M3 0.12 0.08 0.08 0.07 0.07

0.5 M1 UA 0.02 0.02 0.03 0.03
M2 0.08 0.06 0.06 0.06 0.06
M3 0.22 0.18 0.17 0.14 0.13

0.6 M1 UA UA 0.01 0.01 0.02
M2 0.07 0.07 0.07 0.07 0.07
M3 0.32 0.29 0.26 0.25 0.25

Notes: Missingness is 25%. One MNAR covariate.

5. Discussion

The focus of this article was the performances of the commonly used model selection criteria
for comparisons among selection models with the same response and covariate models but with
different non-ignorable missingness models. In addition to the traditional model selection criteria,
novel extensions were also considered and their performances were evaluated. The sample size
selected to study the finite sample performances of the criteria was n = 250 and a reasonable choice
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Table 11. Monte Carlo averages of the deviance, penalty, and DIC estimates.

True Fitted
Missing model model Deviance penalty1 penalty4 penalty5 DIC1 DIC4 DIC5

15% M1 M1 269.05 5.18 7169.57 23.37 274.23 7438.62 292.42
M2 270.65 4.93 6943.96 23.89 275.58 7214.62 294.54
M3 270.43 5.79 6931.57 23.93 276.22 7202.00 294.36

M2 M1 251.76 5.83 7534.10 17.95 257.58 7785.80 269.70
M2 262.24 5.30 6501.40 19.82 267.54 6763.60 282.06
M3 262.35 5.73 6468.50 19.86 268.07 6730.80 282.21

M3 M1 250.65 5.76 7798.83 18.35 256.41 8049.48 268.99
M2 262.45 5.55 6688.22 20.52 267.99 6950.67 282.96
M3 262.27 5.78 6740.43 20.66 268.05 7002.69 282.93

25% M1 M1 263.26 6.17 10,552.97 29.89 269.43 10,816.23 293.15
M2 265.05 5.88 10,328.18 30.67 270.93 10,593.23 295.72
M3 264.87 6.87 10,146.33 30.49 271.75 10,411.19 295.35

M2 M1 258.91 6.29 8197.60 20.99 265.21 8456.50 279.90
M2 261.75 5.57 7896.50 21.87 267.33 8158.30 283.62
M3 262.28 6.12 7908.70 22.39 268.39 8171.00 284.68

M3 M1 202.57 13.15 18,280.49 16.48 215.71 18,483.06 219.05
M2 247.13 11.12 10,088.97 21.07 258.25 10,336.10 268.20
M3 245.14 12.53 10,348.27 20.72 257.67 10,593.41 265.86

Note: Two MNAR covariates.

Table 12. Monte Carlo averages of the WL estimates (15% missingness).

WL w Fitted model ν = 0.2 ν = 0.4 ν = 0.5 ν = 0.6 ν = 0.8

WL1 0.4 M1 225.19 262.09 280.54 298.99 335.90
M2 226.43 263.61 282.21 300.80 337.98
M3 226.75 263.75 282.26 300.76 337.76

0.5 M1 232.29 270.32 289.33 308.34 346.37
M2 233.48 271.77 290.91 310.06 348.35
M3 233.83 271.93 290.98 310.03 348.13

0.6 M1 241.37 280.84 300.57 320.30 359.77
M2 242.47 282.17 302.02 321.87 361.57
M3 242.87 282.37 302.11 321.86 361.35

WL2 0.4 M1 61.86 72.05 77.15 82.25 92.44
M2 54.05 62.78 67.14 71.50 80.23
M3 52.65 61.01 65.20 69.38 77.75

0.5 M1 57.33 66.78 71.51 76.24 85.70
M2 50.61 58.90 63.05 67.20 75.50
M3 49.30 57.23 61.20 65.17 73.09

0.6 M1 53.51 62.35 66.77 71.19 80.03
M2 47.75 55.68 59.65 63.62 71.55
M3 46.48 54.04 57.82 61.60 69.16

Notes: The true missingness model is M1. Two MNAR covariates.

of size according to similar simulation studies in the literature of interest. The main findings can
be summarized as follows:

• Different criteria show a tendency towards different MNAR models.
• Deviance, penalty5, DIC1, and DIC5 have a tendency to point to selection models with the

smallest non-ignorably missingness model.
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Table 13. Monte Carlo averages of the WL estimates (25% missingness).

WL w Fitted model ν = 0.2 ν = 0.4 ν = 0.5 ν = 0.6 ν = 0.8

WL1 0.4 M1 220.65 256.56 274.51 292.46 328.37
M2 221.99 258.20 276.31 294.41 330.62
M3 224.08 258.42 276.43 294.44 330.46

0.5 M1 228.16 265.23 283.77 302.31 339.38
M2 229.46 266.81 285.49 304.17 341.52
M3 229.93 267.08 285.66 304.24 341.39

0.6 M1 237.81 276.38 295.66 314.95 353.52
M2 239.02 277.83 297.24 316.65 355.47
M3 239.57 278.17 297.47 316.77 355.38

WL2 0.4 M1 83.59 97.20 104.00 110.81 124.42
M2 82.28 95.79 102.55 109.30 122.82
M3 80.89 93.81 100.26 106.72 119.63

0.5 M1 79.91 92.91 99.41 105.90 118.90
M2 78.39 91.28 97.72 104.16 170.04
M3 76.84 89.09 95.22 101.34 113.59

0.6 M1 76.74 89.20 95.44 101.67 114.14
M2 75.06 87.40 93.57 99.75 112.09
M3 73.34 85.01 90.85 96.69 108.36

Notes: The true missingness model is M1. Two MNAR covariates.

Table 14. Monte Carlo averages of the WL estimates (15% missingness).

WL w Fitted model ν = 0.2 ν = 0.4 ν = 0.5 ν = 0.6 ν = 0.8

WL1 0.4 M1 210.75 245.08 262.25 279.42 313.75
M2 219.45 255.32 273.25 291.18 327.05
M3 219.79 255.60 273.50 291.41 327.22

0.5 M1 218.55 254.03 271.77 289.51 324.99
M2 226.89 263.82 282.28 300.74 337.67
M3 227.24 264.11 282.55 300.98 337.86

0.6 M1 228.75 265.71 284.19 302.67 339.63
M2 236.48 274.76 293.90 313.04 351.32
M3 236.85 275.08 294.19 313.30 351.52

WL2 0.4 M1 70.55 82.35 88.25 94.14 105.94
M2 61.74 73.27 79.04 84.81 96.35
M3 59.88 70.90 76.41 81.92 92.94

0.5 M1 65.46 76.49 81.99 87.51 98.53
M2 55.71 66.40 71.74 77.08 87.77
M3 53.89 64.06 69.15 74.23 84.40

0.6 M1 61.05 71.42 76.60 81.78 92.14
M2 50.70 60.67 65.65 70.63 80.60
M3 48.92 58.38 63.11 67.83 77.29

Notes: The true missingness model is M2. Two MNAR covariates.

• Penalty1, penalty4, and DIC4 have a tendency to point to selection models with the largest
non-ignorably missingness model.

• Performances of the WL measures depend on the weight function; whether the WL measure
tends to pick selection models with the smallest or the largest missingness model depends upon
the weight function.

Our results showed that the existent as well as proposed model selection criteria were unable
to fully satisfy the purpose of pinning down the correct missingness model, indicating a need
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Table 15. Monte Carlo averages of the WL estimates (25% missingness).

WL w Fitted model ν = 0.2 ν = 0.4 ν = 0.5 ν = 0.6 ν = 0.8

WL1 0.4 M1 216.21 251.29 268.84 286.39 321.47
M2 218.12 253.71 271.50 289.30 324.88
M3 218.92 254.47 272.25 290.02 325.58

0.5 M1 223.92 260.11 278.21 296.30 332.49
M2 225.74 262.41 280.74 299.07 335.74
M3 226.55 263.18 281.50 299.82 336.45

0.6 M1 233.90 271.51 290.31 309.12 346.73
M2 235.57 273.62 292.64 311.67 349.71
M3 236.39 274.42 293.43 312.43 350.45

WL2 0.4 M1 80.61 93.99 100.68 107.38 120.76
M2 74.80 87.67 94.10 100.54 113.40
M3 73.92 86.36 92.58 98.80 111.24

0.5 M1 76.77 89.58 95.99 102.41 115.21
M2 69.97 82.12 88.20 94.28 106.44
M3 69.02 80.73 86.59 92.45 104.16

0.6 M1 73.44 85.77 91.94 98.10 110.43
M2 65.83 77.37 83.14 88.91 100.46
M3 64.81 75.90 81.44 86.98 98.07

Notes: The true missingness model is M2. Two MNAR covariates.

Table 16. Monte Carlo averages of the WL estimates (15% missingness).

WL w Fitted model ν = 0.2 ν = 0.4 ν = 0.5 ν = 0.6 ν = 0.8

WL1 0.4 M1 209.65 243.84 260.93 278.02 312.20
M2 219.62 255.45 273.37 291.28 327.11
M3 219.62 255.39 273.27 291.15 326.92

0.5 M1 217.55 252.90 270.57 288.26 323.61
M2 227.09 263.99 282.43 300.88 337.77
M3 227.11 262.94 282.35 300.77 337.60

0.6 M1 227.86 264.74 283.18 301.61 338.49
M2 236.71 274.96 294.08 313.21 351.46
M3 236.75 274.93 294.03 313.12 351.30

WL2 0.4 M1 70.78 82.61 88.53 94.44 106.27
M2 52.27 63.18 68.63 74.08 84.99
M3 51.30 61.87 67.16 72.44 83.01

0.5 M1 65.83 76.91 82.45 87.99 99.07
M2 48.62 58.87 63.99 69.11 79.35
M3 47.64 57.55 62.50 67.45 77.36

0.6 M1 61.53 71.96 77.18 82.40 92.83
M2 45.52 55.20 60.03 64.87 74.55
M3 44.53 53.87 58.53 63.20 72.53

Notes: The true missingness model is M3. Two MNAR covariates.

to improve the model selection criteria used in the GLM analysis with non-ignorably missing
covariates. One such attempt towards improving the WL measures in this context and explaining
the model selection tendency of the criterion as observed in the simulation experiment may involve
examining whether a WL measure in this context is a special case of the general form introduced by
Smith and Spiegelhalter [17]. They considered the general form given by �(a) = λ − a(p1 − p0),
where �(a) is the log ratio of the specific model selection criterion computed for two competing
models in which one model is nested in the other, λ is the likelihood ratio statistic, p1 and p0 are the
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Table 17. Monte Carlo averages of the WL estimates (25% missingness).

WL w Fitted model ν = 0.2 ν = 0.4 ν = 0.5 ν = 0.6 ν = 0.8

WL1 0.4 M1 172.49 198.99 212.09 225.29 251.69
M2 209.50 242.01 258.27 274.53 307.04
M3 208.64 240.67 256.69 272.71 304.74

0.5 M1 182.15 210.12 224.10 238.09 266.06
M2 217.67 251.11 267.83 284.55 317.99
M3 216.97 249.92 266.40 282.88 315.84

0.6 M1 195.44 225.58 240.65 255.72 285.86
M2 228.37 263.00 280.32 297.64 332.28
M3 227.92 262.06 279.14 296.21 330.36

WL2 0.4 M1 61.25 70.50 75.13 79.75 89.00
M2 59.70 70.55 75.98 81.40 92.25
M3 58.04 68.40 73.59 78.77 89.13

0.5 M1 57.90 66.63 70.99 75.36 84.09
M2 55.03 65.26 70.38 75.50 85.73
M3 53.35 63.09 67.96 72.82 82.56

0.6 M1 54.90 63.17 67.30 71.43 79.69
M2 51.13 60.84 65.69 70.55 80.26
M3 49.44 58.65 63.25 67.85 77.05

Notes: The true missingness model is M3. Two MNAR covariates.

Table 18. The proportion of time the correct model is selected.

Missing True model Deviance penalty1 penalty4 penalty5 DIC1 DIC4 DIC5

15% M1 0.67 0.10 0.04 0.83 0.80 0.04 0.73
M2 UA 0.83 0.47 0.01 UA 0.47 UA
M3 0.02 0.08 0.39 0.03 0.01 0.39 UA

25% M1 0.61 0.10 0.11 0.66 0.79 0.11 0.69
M2 0.11 0.90 0.34 0.15 0.20 0.34 0.14
M3 UA 0.05 0.32 0.04 UA 0.32 UA

Notes: Two MNAR covariates. UA, unable to select the model framework with the correct missingness model.

number of covariates in models m1 and m0, respectively, such that m0 ⊂ m1, and the coefficient
a is the penalty for overfitting quantified. They showed that a number of model comparison
criteria such as the Akaike Information Criterion and Bayes Factor can be regarded as special
cases of this general expression. Also, as they noted in their paper, the distribution of λ being
asymptotically equivalent to χ2

(p1−p0)
results in E[�(a)] ≈ a(p1 − p0) and this expression helps in

establishing the model selection tendency of the criterion based on whether the quantity a ≥ 1 or
not. Laud and Ibrahim [18] showed under non-informative priors that the WL measure in complete
data situations is a special case of this general form: 2n log(WLm0/WLm1) = λ − a(p1 − p0),
where a = (n/(p1 − p0)) log((n − p0 − 2)/(n − p1 − 2)).Whether aWL measure in missing data
situations too is a special case or not remains as an interesting question. If it can be shown that it
is indeed a special case, then the magnitude of the coefficient a would shed theoretical light on
the direction of the model tendency of the WL measure as observed in the simulation study.

In this article, we examined the performances of the commonly used model selection criteria
and their possible extensions within the realm of GLMs with covariates subject to non-ignorable
missingness. There are study designs such as longitudinal studies whereby especially response
variables suffer from non-ignorable missingness. Investigating the performances of the present
and proposed model selection criteria in such situations is a topic of interest for future research.
Especially in epidemiological studies in which several explanatory variables are involved, the
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Table 19. The proportion of time the correct model is selected.

WL w True model ν = 0.2 ν = 0.4 ν = 0.5 ν = 0.6 ν = 0.8

WL1 0.4 M1 0.79 0.73 0.72 0.72 0.68
M2 UA UA UA UA UA
M3 0.02 0.02 0.02 0.02 0.02

0.5 M1 0.82 0.92 0.92 0.92 0.92
M2 UA UA UA UA UA
M3 0.02 0.27 0.27 0.27 0.27

0.6 M1 0.84 0.76 0.73 0.69 0.67
M2 UA UA UA UA UA
M3 0.02 0.02 0.02 0.02 0.02

WL2 0.4 M1 UA UA UA UA UA
M2 0.07 0.05 0.05 0.05 0.05
M3 1.00 1.00 1.00 1.00 1.00

0.5 M1 UA UA UA UA UA
M2 0.05 0.05 0.05 0.04 0.02
M3 1.00 1.00 1.00 1.00 1.00

0.6 M1 UA UA UA UA UA
M2 0.02 UA UA UA UA
M3 1.00 1.00 1.00 1.00 1.00

Notes: Missingness is 15%. Two MNAR covariates.

Table 20. The proportion of time the correct model is selected.

WL w True model ν = 0.2 ν = 0.4 ν = 0.5 ν = 0.6 ν = 0.8

WL1 0.4 M1 0.72 0.65 0.65 0.64 0.62
M2 0.27 0.23 0.20 0.17 0.14
M3 UA UA UA UA UA

0.5 M1 0.73 0.88 0.88 0.88 0.88
M2 0.28 0.23 0.21 0.19 0.14
M3 UA UA UA UA UA

0.6 M1 0.76 0.71 0.68 0.65 0.61
M2 0.27 0.22 0.20 0.18 0.15
M3 UA UA UA UA UA

WL2 0.4 M1 0.02 0.02 0.03 0.03 0.03
M2 0.20 0.20 0.20 0.20 0.19
M3 0.59 0.49 0.49 0.48 0.43

0.5 M1 0.01 0.01 0.01 0.02 0.02
M2 0.19 0.09 0.09 0.08 0.08
M3 0.70 0.64 0.64 0.55 0.52

0.6 M1 0.01 0.01 0.01 0.01 0.02
M2 0.11 0.08 0.08 0.08 0.08
M3 0.80 0.72 0.69 0.66 0.61

Notes: Missingness is 25%. Two MNAR covariates.

number of covariates subject to missingness is higher than that in the scenarios studied in the
simulation experiment herein [19]. Because of the computational cost, Monte Carlo simulation
studies usually are concerned with scenarios with a smaller number of covariates when the missing
data are involved [4,20–23]. Nevertheless, the results of our simulation experiment point to a need
for developing a model selection criterion that can be used to make a more accurate comparison
among non-ignorable missingness models and constitute a reference for the practitioners in the
fields where statistical modelling with missing covariates is involved.
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