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Abstract
In this paper we present a detailed comparison of the prediction error based model
selection criteria in circular randomeffectsmodels. The study is primarilymotivated by
the need for an understanding of their performance in real life ecological and environ-
mental applications. Prediction errors are based on posterior predictive distributions
and themodel selectionmethods are adjusted for the circularmanifold. Plug-in estima-
tors of the circular distance parameters are also considered. AMonte Carlo experiment
scheme taking the account of various realistic ecological and biological scenarios is
designed. We introduced a coefficient that is based on conditional expectations to
examine how the deviation from von Mises (vM) distribution, the standard choice
in applications, effects the performances. Our results show that the performances of
widely used circular predictive model selection criteria mostly depend on the sample
size as well as within-sample-correlation. The approaches and selection strategies are
then applied to investigate orientational behaviour of Talitrus saltator under the risk
of dehydration and direction of wind with respect to associated atmoshperic variables.
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1 Introduction

Circular random effects models are used in various different environmental and eco-
logical studies in which response data are angular or directional and observed for each
subject multiple times (D’Elia 2001; Hall and Shen 2015; Maruotti 2016; Maruotti
et al. 2016; McMillan et al. 2013; Nunez-Antonio and Gutierrez-Pena 2014). For
instance, as seen in our Sect. 5.1, Talitrus saltator, a beach amphipod, are observed in
many ecological studies to investigate their orientation with respect to important envi-
ronmental and ecological factors (Scapini 1997). In these studies, the response data
consist of directional recordings of their consecutive jumps whereas covariate data
consist of several environmental factors including wind direction and sun azimuth. As
in such experiments on animal orientations, the aim is to understand the orientation
of a particular species under given and advancing ecological conditions as well as to
determine the environmental factors that play significant role in their orientation. In
this regard, the focus is on determining the most significant factors that should take
place in a model with good predictive abilities. This can be accomplished by using a
predictive model comparison/selection method applied over a set of candidate nested
circular random effect models. Circular prediction errors are based on circular distance
between the observed and predicted.

Describing a distance function on the circular space requires adjusting the standard
formulas for the circle. Ravindran and Ghosh (2011) considered a model selection
criteria based on minimizing a predictive loss defined on a circle and conducted a
simulation study to investigate the performance of this method in a non-regression
setting in terms of selecting the most suitable distribution for its predictive abilities. In
the regression setting, Maruotti (2016) employed the trigonometric distance formula
suggested by Jammalamadaka andSenGupta (2001) to define prediction error and used
it to make a selection over the set consisting of models with different random effect
distributions. These criteria are used by others in the circular literature to evaluate the
predictive performances of models (Mastrantonio et al. 2016).

However, to the best of our knowledge, there is no literature describing the per-
formances of existent predictive model selection methods for circular data. Results
of such an investigation would provide the researchers with a guideline regarding the
performances of these predictive model selection methods with respect to the char-
acteristics of their study design such as number of subjects, number of replications
from each subject, and correlation between the observations obtained from the same
subject. It is important to interpret the result of a model selection operation in the light
of such information. Therefore, the aim of this paper is to provide the performances of
predictive model selection criteria in most common practical scenarios whose aim is
to obtain a parsimonous predictive model for repetitively occurring circular data and
to develop guidelines for the researchers.

The rest of the paper is hence organized as follows. Section 2 previews Bayesian
longitudinal circular-linear random effects models. In this section, Bayesian analysis
of these models is also given. We present the predictive loss based model selection
criteria and some comments in Sect. 3. Section 4 presents several simulation examples
elaborating on the performance of the predictive model selection approaches. These
approaches are then applied in Sect. 5 on T. saltator and wind direction datasets
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to illustrate the use of circular predictive model selection discussed here to identify
predictive environmental factors on the orientation of these amphipods. Section 6
concludes the article with a critical discussion of our findings and lays out a general
guideline for researchers including environment, ecology, and biology scientists.

2 Model preview

2.1 Description of themodel

Let θi j ∈ [−π, π ], i = 1, ..., n, j = 1, ...,mi be a circular random variable in a lon-
gitudinal study. θi j denotes the circular response for subject i on the jth measurement
time. Also let Xi j be the vector of P linear covariates for subject i observed at jth
time point. Let Zi j be a known subset of Xi j of dimension q that may include 1 for
a random intercept. We consider vM distribution as this is the distribution of choice
for circular regression in most applied problems. Random effects vM model (which
we will denote hereafter by LCREM standing for longitudinal circular random effects
model) is given by the following hierarchical framework:

θi j |bi ∼ vM(μi j , κ),

μi j = μ + g(Zi jbi + Xi jβ)

bi ∼ Nq(0,Σ). (1)

for i = 1, ..., n and j = 1, ...,mi where μi j and κ are the conditional mean function
and concentration parameter given bi , bi a q×1 vector of unobserved subject-specific
random effects for subject i which is usually assumed to follow a multivariate normal
distribution (Nq ) with zero mean for identifiability and variance-covariance matrix
Σ . Also, μ ∈ [−π, π ] is an offset parameter and β is a P × 1 vector of regres-
sion coefficients (fixed effects), g is a link function such as g(u) = 2 arctan(u) in
which case inverse tangent is the link, bi and circular residuals are assumed inde-
pendent. It is also assumed that θi j and θi j ′ are conditionally independent given
subject-specific random effects. A simpler form of the model, which includes only a
subject-specific random intercept, was methodologically undertaken earlier by D’Elia
(2001) for a vM distribution and by Nunez-Antonio and Gutierrez-Pena (2014), and
Maruotti (2016) for a projected normal distribution. Here, we consider the general
version of these models where there are both random intercepts and random coeffi-
cients. If there is a belief that, in the underlying natural phenomena, covariates such
as environmental factors affect subjects differently, then random coefficient model
can be used. Otherwise, random intercept can be used to model dependent angular
data.

Interpretation of the regression coefficients in a circularmodel is different than those
in a regression model defined on Euclidean space and thus requires special attention in
practice. The correct interpretation requires the origin and the direction of rotation to
be explicitly stated per data application. To illustrate, consider that the circular variable
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is direction of wind, which is a common variable in air pollution studies. Suppose that
the origin is North, the direction of rotation is clockwise and the inverse tangent link
is used. Then, a positive βp refers to a clockwise advance from North in the response
with a one unit increase in the pth covariate. In other words, when there is one unit
change in the pth covariate, there will be a magnitude of βp change in tan(

θi j−μ

2 ).

2.2 Bayesian analysis

Bayesian analysis of the model is straightforward. We can use the prior distributions
that are used for standard Bayesian analyses of vM distribution and random effects
models. Namely, μ ∼ G[−π,π ], β ∼ NQ(μβ,Σβ), κ ∼ Ga(aκ , bκ ) and Σ−1 ∼
Wishart(R, d), where G[−π,π ] is a distribution defined on [−π, π ] such as circular
uniform distribution, μβ,Σβ, aκ , bκ , μ0, σ

2
0 , R and d are fixed hyper-parameters.

Letting Dobs = {θ , X} and Dcomp = {θ , X,b1, . . . ,bn} be the observed and
complete data respectively, joint posterior distribution of all unknown quantities is
given by

f (μ,β, κ,Σ, b1, . . . , bn|Dobs) ∝ L(μ,β, κ,Σ |Dcomp) f (μ) f (β) f (κ) f (Σ)

where L(μ,β, κ,Σ |Dcomp) is the complete data likelihood function and the rest are
the prior probability density functions (pdf’s). Complete data likelihood function is
given as follows

L(μ,β, κ,Σ |Dcomp) =
n∏

i=1

⎛

⎝
m∏

j=1

f (θi j |bi , μ,β, κ)

⎞

⎠ f (bi |Σ), (2)

where f (θi j |bi , μ,β, κ) denotes the conditional circular pdf (vM) and f (bi |Σ) is the
prior distribution for bi for i = 1, . . . , n. Hence,

L(μ,β, κ,Σ |Dcomp)

=
n∏

i=1

⎛

⎝
m∏

j=1

[2π I0(κ)]−1 exp{κ cos(θi j − μ − 2 arctan(b0i + βX i j ))}
⎞

⎠

|Σ |−0.5exp{−0.5b′
iΣ

−1bi } (3)

In order to obtain the predicted data, a posterior predictive distribution is used as
follows. Let θ pred = (θ

pred
1 , ..., θ

pred
n ) and θobs = (θobs1 , ..., θobsn ) be predicted and

observed data, respectively. Predicted data drawn fromposterior predictive distribution
is given below

f (θ pred
i |θobs) =

∫
f (θ pred

i |μ,β, κ,Σ,b) f (μ,β, κ,Σ,b|θobs)dμ, dβ, dκ, dΣ, db,

f or i = 1, ..., n,

(4)
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where f (θ pred |μ,β, κ,Σ,b) is the posterior predictive density of the data which
is the density evaluated at θ pred given the parameter vector (μ,β, κ,Σ,b) and
f (μ,β, κ,Σ,b|θobs) is the joint posterior density.
Posterior inference of parameters and predictions are obtained using MCMC algo-

rithms that can be easily implemented in in OpenBUGS (see Appendix 1). Under
ergodicity conditions, sample moments of random samples from full conditional den-
sities converge in probability to posterior moments.

3 Predictive density basedmodel assessment, comparison, and
selection

Usual prediction error that is defined for linear response variables is not applicable for
predictive models defined on the circles. To define circular prediction error, one can
consider the trigonometric distance (Jammalamadaka and SenGupta 2001; Maruotti
2016; Maruotti et al. 2016). Letting K and L be two distinct points on the circle with
angles from the origin symbolized by α and β respectively, trigonometric distance
function denoted by d(. , .) is given by d(α, β) = 1− cos(α −β) and d(α, β) ∈ [0, 2]
which is a monotone increasing function of the angle between the points K and L.
Denoting the predicted and observed angular longitudinal data by θ

pred
i j and θobsi j

respectively, total circular prediction error (CPE) and the predictive model selector
(CPD1) are given by

CPE =
n∑

i=1

mi∑

j=1

d(θ
pred
i j , θobsi j )

CPD1 = E[CPE |θobs] (5)

where expectation is over the posterior predictive density.
Predictive loss function can also be defined as a circular distance, which is the

absolute difference between the predicted and the observed responses adjusted for the
circular sample space (Ravindran and Ghosh 2011). Then the total absolute prediction
error (APE) and the corresponding model selector, denoted here by CPD2, are given
by

APE =
n∑

i=1

mmi∑

j=1

min
(
|θ pred
i j − θobsi j |, 2π − |θ pred

i j − θobsi j |
)

CPD2 = E
[
APE |θobs

]
(6)

Themodels with lower CPD values have a better predictive ability. Note that, unlike
the loss functions for linear data, CPD2 for circular data can not be decomposed into
two terms as the sum of penalty and a term for goodness of fit.

One can also consider the plug-in estimators of CPE andAPEwhere predictions are
plugged in by their posterior estimators. The resulting plugged-in CPE and plugged-in
APE are denoted by PCPE and PAPE and presented below.
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PCPE =
n∑

i=1

mmi∑

j=1

(
1 − cos(E[θ pred

i j |θobsi j ] − θobsi j

)
(7)

PAPE =
n∑

i=1

mmi∑

j=1

min
(
|E[θ pred

i j |θobsi j ] − θobsi j |, 2π − |E[θ pred
i j |θobsi j ] − θobsi j |

)

(8)

It must be noted that lower PCPE and PAPE indicate better predictive performances.
OpenBUGS sofware was used to perform the calculations of CPD1 and CPD2.

An examplary code provided in Fig. 1 in Appendix shows how CPD1 and CPD2
were calculated. PCPE and PAPE are computed in R using the output delivered by
OpenBUGS.

4 Simulation study

In this section performances of these model selection methods are investigated from
different aspects under several scenarios that represent studies conducted in practice.
In that sense, we consider unbalanced longitudinal studies that are common especially
in ecological researches. Average number of observations per subject is considered
to be seven, which can be found in many studies in practice on animal orientations.
The number of observations per subject hence is generated from a discrete uniform
distribution with a mean equals seven. Our Monte Carlo experiment is controlled for
sample size, effect size and latent within cluster variation enabling us to evaluate the
performances for different underlying settings. We begin with describing the specific
aims of the two separate simulations studies and give their layout, which is followed
by the specifics of the Bayesian computations. In the first simulation study, the aim is
to evaluate and compare the suggested circular model selection methods in their finite
sample behaviors as well as in their consistency property, i.e. whether the frequency
of selecting the true model converges to unity with increasing sample size. For this
simulation study, data are generated as follows. Circular data are generated from
θi j ∼ vM(μi j , κ = 2) following the true conditional mean model TM: μi j = μ +
2 arctan(b0i + (b1i + β1)xi j + β2x2i j ). Here two different true settings are considered

for the fixed effects. These are (β1, β2)
T = (2.5, 1.5) and (β1, β2)

T = (2.5, 0.3)
representing an emphasized quadratic effect and a relativelymoderate one respectively.
Random effects are generated following N2(0,Σ)where variance of random slope and
covariance are set at Σ22 = 4 and Σ12 = 0.25 respectively. Three different settings
are considered for variance of random intercept, Σ11, as 0.18, 0.72 and 5.28 that lead
to different within cluster variation. Time-dependent linear explanatory variable xi j
are generated from N(0,1) without loss of generality. Each simulated data set is fitted
by the following circular random effects models denoted byM1 andM2 and predictive
selectors are calculated for each model.

M1: μi j = μ + 2 arctan(b0i + (b1i + β1)xi j + β2x2i j )
M2: μi j = μ + 2 arctan(b0i + (b1i + β1)xi j ).
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In the second simulation study, the aim is to investigate the strength of the methods
in their decision for choosing a vM model. The strength of this decision is defined as
the ratio of expected value of the criterion under a non-vM assumption to its expected
value under vM assumption. The criterion with a ratio further away from unity is
more decisive in its identification of vM. For this study, data are generated from the
following models denoted by TM1 and TM2 where the underlying distributions are
very similar to each other.

TM1: θi j ∼ vM(μi j , κ = 2)
μi j = μ + 2 arctan(b0i + (b1i + β1)xi j ),

TM2: θi j ∼ WC(μi j , ρ = 0.62)
μi j = (μ + b0i + (b1i + β1)xi j ) [mod 2π ]

where WC is Wrapped Cauchy distribution, μi j s denote the mean direction while κ

and ρ denote the concentration parameters and the true settings for other parameters
are as before. For each simulated dataset, vM regression (TM1) is fitted.

Bayesian analysis of the models in these studies is carried out in OpenBUGS. We
used the noninformative priors given in Sect. 2.2. Trace plots and Brooks–Gelman–
Rubin statistic are used for convergence diagnostics and determining the burn-in
period. MCMC iterations were run until Monte Carlo errors based on the Markov
chain were less than 5% of the posterior standard deviations. Finally, posterior means
(i.e. expectation of the posterior distributions) are used for estimating themodel param-
eters and the predictions. All Monte Carlo scenarios were repeated 100 times.

The results of the investigation are given in Tables 1 and 2. Table 1 gives the fre-
quency of selecting the true model for each criterion. The results show that model
selection methods based on CPD1 and CPD2 favor the true model more often com-
pared to the other methods implying overall superiority in identification of the true
meanmodel. However themethods perform equallywell if the underlyingmeanmodel
has strong non-linearity. The results also show that each criterion is consistent as the
frequency of true selection converges to one with increasing sample size, fastest for
CPD1 and CPD2. Furthermore, Table 2 in particular presents that the strength ratio
for CPD1 is generally greater than the others implying that CPD1 can identify the
true vM more decisively.

5 Applications

In this section we employ two datasets to illustrate the use of the methods. The first
dataset is a standard dataset used in circular literature (Sect. 5.1) whereas the second
dataset comes from an atmospheric study (Sect. 5.2). Aim of Sect. 5.1 is to provide
a detailed analysis showing the contribution of our model selection methods with
respect to the current circular literature available on this dataset. Aim of Sect. 5.2 is
to illustrate an application of the model selection methods in practice.
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Table 1 Frequency of selecting the true mean model

Σ11 Criterion β2 = 0.3 β2 = 1.5

n = 20 50 100 250 500 n = 20 50 100 250 500

0.18 CPD1 49 60 76 96 98 100 100 100 100 100

CPD2 49 61 77 96 98 100 100 100 100 100

PCPE 35 56 66 87 92 97 100 100 100 100

PAPE 32 55 60 86 90 97 100 100 100 100

0.72 CPD1 49 68 76 91 98 100 100 100 100 100

CPD2 49 68 76 90 98 100 100 100 100 100

PCPE 34 56 57 79 83 99 100 100 100 100

PAPE 36 56 58 79 83 99 100 100 100 100

5.28 CPD1 36 73 83 84 99 98 100 100 100 100

CPD2 36 71 83 84 99 98 100 100 100 100

PCPE 23 52 67 75 97 98 100 100 100 100

PAPE 23 50 70 75 97 98 100 100 100 100

Table 2 Monte Carlo
approximation of strength ratio

Σ11 Criterion n

50 100 250 500

0.18 CPD1 1.518 1.544 1.547 1.538

CPD2 1.358 1.375 1.377 1.372

PCPE 1.328 1.334 1.348 1.344

PAPE 1.230 1.233 1.244 1.242

0.72 CPD1 1.598 1.688 1.622 1.626

CPD2 1.414 1.428 1.430 1.432

PCPE 1.368 1.387 1.397 1.391

PAPE 1.268 1.281 1.287 1.285

5.28 CPD1 1.715 1.741 1.705 1.710

CPD2 1.494 1.512 1.487 1.491

PCPE 1.233 1.235 1.220 1.233

PAPE 1.182 1.183 1.171 1.181

5.1 Orientation of Talitrus saltator

In this section we use the sandhopper dataset to assess the performance of predictive
model selection criteria in a real data application. The particular sandhopper species
in consideration is Talitrus saltator and the main question is the factors effecting their
orientation towards the sea under the risk of high dehydration. The dataset is taken
from Nunez-Antonio and Gutierrez-Pena (2014) and originally given by Borgioli et
al. (1999a, 1999b). The data have previously been analyzed by Borgioli et al. (1999a,
1999b), D’Elia (2001), Lagona (2016),Maruotti (2016),Maruotti et al. (2016), Nunez-
Antonio andGutierrez-Pena (2014), andSong (2007). Thedataset includes their escape
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directions in angles with respect to North that aremeasured every tenminutes resulting
in five recordings. The study also includes data on environmental factors such as
direction of the wind and sun azimuth as well as biological characteristics of the
sandhoppers such as their left and right ocular diameters. Wind direction and sun
azimuth are angular and categorized prior to modeling as in the previous circular
analysis of the data (Nunez-Antonio and Gutierrez-Pena 2014; Lagona 2016;Maruotti
2016; Rivest and Kato 2019). Accordingly, there are four categories for wind direction
and two categories for sun azimuth. For wind: wind from land [337◦, 66◦] (reference);
wind from longshore-east (LSE) [67◦, 156◦]; wind from sea (SEA) [157◦, 246◦];
wind from longshore-west (LSW) [247◦, 336◦]. For sun azimuth: morning (MOR)
[124◦, 149◦]; afternoon [240◦, 269◦] (reference). Finally, an eye symmetry index is
constructed, as in Borgioli et al. (1999a, 1999b), and D’Elia (2001), using the ocular
diameters and used in the preceding analyses: Eye = log(max diameter of right eye ×
min diameter of right eye) − log(max diameter of left eye × min diameter of left eye)
which measures the difference between the sizes of the right and the left eye.

5.1.1 Exploratory analysis

According to the circular histograms previously given in D’Elia (2001), marginal
distribution of the escape directions for each release is a symmetric and unimodal
circular distribution. Circular summary statistics, mean direction (θ̄), mean resultant
length (R̄), circular variance (V), circular symmetry coefficient (s) and p-values of
large-sample test for circular symmetry, that are originally given in Pewsey (2002)
are reproduced in Table 3. These results show that the mean direction (θ̄ ) at each
release is close to 201◦ [which is the theoretical escape direction (TED)] and there is a
gradual approach to TED after each jump. Also notice the increase and decrease over
the releases in terms of R̄ and V respectively which indicates that their orientations
tend to the same direction as they get closer to the sea. Circular symmetry coefficient
(s) being around zero verifies that each marginal distribution is a symmetric and uni-
modal distribution.We performed a large-sample test for reflective symmetry using the
method by Pewsey (2002) to investigate whether the hypothesis of circular reflective
symmetry is supported by the data. Since all p-values are greater than 0.05 as seen in
the last column of Table 3, it is clear that each marginal distribution is a symmetric
distribution.

We tested the plausability of vM assumption with data on five consecutive releases
collapsed together.Watson’s goodness of fit test (Jammalamadaka andSenGupta 2001)
and its p-value are 0.0883 and 0.092 (at significance level 0.05), respectively, implying
that vM seems to be a plausible distribution for the data.

Circular autocorrelation coefficients for escape directions are given in Table 4.
Clearly, there is a noticeable circular autocorrelation between successive releases and
as seen in the results autocorrelation within same animal decreases as the lag between
the two jump points increases. The angles observed on the last two jumps are the most
correlated (0.87). This within-correlation needs to be accounted for in the regression
analysis.
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Table 3 Circular summary
statistics for each marginal
distribution

Release θ̄ R̄ V s p-value

1st 167.088 0.523 0.477 −0.244 0.283

2nd 171.401 0.528 0.472 0.026 0.912

3rd 193.242 0.576 0.424 0.098 0.733

4th 190.887 0.627 0.373 0.170 0.582

5th 194.585 0.667 0.333 0.204 0.543

Table 4 Autocorrelation
coefficient for escape directions

Release 1st 2nd 3rd 4th 5th

1st 1 0.76 0.58 0.61 0.56

2nd 1 0.70 0.67 0.68

3rd 1 0.77 0.69

4th 1 0.87

5th 1

5.1.2 Modeling using LCREM

Previously Borgioli et al. (1999a, 1999b), D’Elia (2001), and Song (2007) used a
variance component model under a vM distribution assumption while later on Nunez-
Antonio and Gutierrez-Pena (2014), Maruotti (2016) and Maruotti (2016) considered
random effects model with projected normal distribution. On the multivariate end,
Lagona (2016) employed a fixed effects regression with multivariate vM distribution.
Here we use LCREM and consider the models shown in Table 5 that will compete
based on the circular predictive model selection criteria. Time variable in the models
is the order of the jump taking the numeric values from one to five.

As can be seen in Table 6, CPD1 and CPD2 tend to select “Sun+Eye”
or “Sun+Wind+Eye” while PAPE and PCPE tend to select “Sun+Wind” or
“Sun+Wind+Eye”. The full model is selected by all four criteria. This is in line
with the previous findings in the literature. Our results further show that “Sun+Eye”
model is equally adequate in terms of controlled prediction errors which indicates
in turn that sun azimuth and eye ocular structure may be the main driving forces
behind the orientation of sandhoppers towards the sea under dehydration threat.
Further inference based on “Sun+Eye” model is given in Table 7. Estimate and
Std in the table correspond to posterior means and posterior standard deviations.
Accordingly, for Eye=0 and Time=1 (first jump), mean direction in the morning is
μi j = 2.871+ 2 arctan(0.239× 1− 1.101× 0+ 0.054× 1) ≈ 197.097◦ while in the
afternoon it isμi j = 2.871+2 arctan(0.239×0−1.101×0+0.054×1) ≈ 170.168◦.
Other parameters can be interpreted in the similar fashion.

5.2 Eddy covariance flux data set: wind direction

The second dataset considered in this paper is Coastal Biodiversity and Ecosystem
Service Sustainability eddy covariance flux data for Abbotts Hall, Essex (Hill and
Chocholek 2016). Data collection was carried out at Abbotts Hall marsh from 15
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Table 5 Nested models

Covariates Mean models

Sun μi j = μ + 2 arctan(b0i + β1MOR + β2T ime)

Sun + eye μi j = μ + 2 arctan(b0i + β1MOR + β2Eye + β3T ime)

Sun + wind μi j = μ + 2 arctan(b0i + β1MOR + β2LSE + β3SE A
+ β4LSW + β5T ime)

Sun + wind + eye μi j = μ + 2 arctan(b0i + β1SUN + β2LSE + β3SE A
+ β4LSW + β5Eye + β6T ime)

Table 6 Model comparison for orientation of Talitrus saltator

Tools Models

Sun Sun + eye Sun + wind Sun + wind + eye

CPD1 90.520 89.870 90.490 89.910

CPD2 206.900 206.000 206.800 206.100

PCPE 231.055 231.110 230.184 230.329

PAPE 390.004 390.237 389.2160 389.153

Table 7 Parameter estimates Par. Est. Std. MC error 95% Credible Int.

μ 2.871 0.083 0.002 (2.701, 3.031)

Sun 0.239 0.096 0.003 (0.052, 0.428)

Eye −1.101 0.101 0.002 (−1.300, −0.904)

Time 0.054 0.013 0.0003 (0.028, 0.080)

κ 3.655 0.278 0.005 (3.125, 4.213)

σ 2
b0

0.463 0.124 0.002 (0.270, 0.755)

Table 8 Nested models for wind direction

Covariates Mean models

Random intercept models

Air Temp μi j = μ + 2 arctan(b0i + β1AirT emp)

Net Rad μi j = μ + 2 arctan(b0i + β1Net Rad)

Air Temp + Net Rad μi j = μ + 2 arctan(b0i + β1AirT emp + β2Net Rad)

Random intercept and slope models

Air Temp μi j = μ + 2 arctan(b0i + (β1 + b1i )AirT emp)

Net Rad μi j = μ + 2 arctan(b0i + (β1 + b1i )Net Rad)

Air Temp + Net Rad μi j = μ + 2 arctan(b0i + (β1 + b1i )AirT emp
+ (β2 + b2i )Net Rad)

December 2012 till 27 January 2015 in which a total of 34 variables including soil
variables and atmospheric variables were measured repeatedly on each day. Sample
dataset considered here consists of atmospheric variables recorded seven times a day
during the first 4 months of the year 2013 resulting in mi = 7 for i = 1, . . . , n = 75.
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Table 9 Model comparison for wind direction

Tools Models
Random intercept Random intercept and slope

Air Temp Net Rad Air Temp + Net Rad Air Temp Net Rad Air Temp + Net Rad

CPD1 523.40 524.80 524.10 522.70 524.00 524.20

CPD2 822.20 824.10 823.10 821.20 822.90 823.20

PCPE 537.65 539.75 539.29 536.76 539.05 539.82

PAPE 841.49 844.01 843.56 840.86 843.78 844.20

Our aim is to illustrate the use of our model selection methods for determining some
of the variables that can be used to predict the direction of the wind. Three of the
models given in Table 8 are random intercept models and the others are both random
intercept and slope models.

Table 9 gives the comparison results of these models. Accordingly, all four criteria
tend to select “Air Temp” model with random intercept and slope. This means that the
relationship between air temperature and wind direction can change on different days.
The results also imply that, when air temperature and net radiation are compared, the
former is more predictive for wind direction.

6 Conclusion

Model comparison and selection criteria based on circular prediction errors have been
widely used for circularmodel applications. However, the performances of thesemeth-
ods in the circular regression analyses were unknown. In this paper we investigated
the performance of these model selection criteria in circular vM based random effects
models. vM distribution is the standard distribution of choice in most applied circular
regression problems and thus the paper addresses model selection strategies in most
of the applications.

We used extensive simulation studies illustrating the performances to identify the
model with true mean function. We also examined the strength of the decisions of
the methods on selecting the vM distribution when vM is indeed the true underlying
process. The circular model selection approach based on CPD1 or CPD2 seems
to have overall better performance. The results also show that the performance is
primarily a function of sample size and within-sample-correlation. When uncertainty
in the estimator is large and the function to be plugged-in is nonlinear (like APE
and CPE), errors from using plug-in (in our case PAPE and PCPE) may be large
(Rossi et al. 2005). This means that the size of uncertainty in the estimator affects the
performance of plug-in estimators. (For instance, in another context, when estimating
MSE, Maity and Sherman (2008) showed that plug-in estimators perform inferior
compared to bootstrapmethod in adaptive linear regression). For the correct evaluation
of performances of these estimators (PCPE and PAPE), uncertainty in the prediction,
θ̂ pred , and theoretical properties of these tools should be further investigated.
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A Appendix

See Fig. 1.

Fig. 1 OpenBUGS code for LCREM with P = 1, Q = 2
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