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ABSTRACT
Model selection methods are important to identify the best approxi-
matingmodel. To identify thebestmeaningfulmodel, purpose of the
model should be clearly pre-stated. The focus of this paper is model
selection when the modelling purpose is classification. We propose
a new model selection approach designed for logistic regression
model selection where main modelling purpose is classification. The
method is based on the distance between the two clustering trees.
We also question and evaluate the performances of conventional
model selection methods based on information theory concepts in
determining best logistic regression classifier. An extensive simula-
tion study is used to assess the finite sample performances of the
cluster tree based and the information theoretic model selection
methods. Simulations are adjusted for whether the true model is
in the candidate set or not. Results show that the new approach is
highly promising. Finally, they are applied to a real data set to select
a binary model as a means of classifying the subjects with respect to
their risk of breast cancer.
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1. Introduction

‘All models are wrong, but some are useful’ [1]. This famous quote expresses that mod-
els are just approximations. Utility of a particular approximating model depends on the
specific modelling purpose whether it is for variable selection, prediction, or classification.
Therefore model selection methods should take the account of modelling purpose. How-
ever, this is not the case with current standard model selection criteria. In this article, we
draw attention to this conflict and propose a new family of model selection criteria to be
used particularly when modelling purpose is classification.

Current model selection stage is mainly based on (i) hypothesis testing, (ii) residual
analysis, (iii) use of information theoretic model selection criteria. Numerousmodel selec-
tion methods based on i–iii are given in Rao and Wu [2]. Of the three categories, the
standard ones are the information theoretic model selection criteria such as Akaike Infor-
mation Criterion (AIC) [3], Bayesian Information Criterion (BIC) [4], Consistent Akaike
Information Criterion (CAIC) [5], Information Complexity Criterion (ICOMP) [6] and
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Corrected Akaike Information Criterion (AICc) [7]. They are based on penalized likeli-
hood functions and the objective function is −2log (likelihood). These are widely used
over a set of nested, non-nested and overlapping linear, generalized linear, time series, non-
linear and mixed effects models. Performances of these criteria depend on many factors
including sample size, modelling purpose and the types of the models in the candidate
set. Overlapping and/or nonlinear models are perhaps the least addressed model types in
the model selection literature. Recent model selection criteria for nonlinear models set
include Kim and Cavanaugh [8], Zhang and Wu [9] and Claeskens et al. [10]. For over-
lapping models (linear or nonlinear), recent developments include Apparicio and Villanua
[11] and Marcellino and Rossi [12]. Our focus is model selection in generalized linear
models for categorical responses when themodelling purpose is classification.We propose
a new family of model selection criteria that assess the models based on their classification
performance and denote them by CC, short for cluster tree based criteria. Our aims are to
(i) investigate the performances of the standard model selection criteria for different mod-
elling purposes, (ii) compare the proposed purpose-specific criteria with standard criteria,
which are purpose-free, when the modelling purpose is classification.

The remaining of the paper is organized as follows. Section 2 introduces the cluster tree
based criteria developed for selecting the best logistic regression model where the mod-
elling purpose is classification. Section 3 explains the approaches used to compare the new
criteria with standard information based criteria. Section 4 is an extensive Monte Carlo
simulation study that illustrates performances of cluster and information based model
selection criteria. Section 5 presents a real data analysis. Finally, Section 6 compiles the
main results.

2. Cluster tree basedmodel selection

Logistic regression is widely used in practice as a classification tool, e.g. see [13–15] for
applications in biomedical studies. It is a special case of generalized linear regression
models, in which the logit function is used as the link function and

logit(P(Yi = 1 |Xi)) = β0 + β1xi1 + · · · + βkxik, i = 1, 2, . . . , n (1)

where

logit(p) = log
(

p
1 − p

)
. (2)

Classification of the subjects by their observed categorical responses and by their model
based expectations can be thought as two different classifying (cluster) trees. Comparison
of these cluster trees may give information about the plausibility of a particular categorical
regression model when the intention is to use the model as a classifying tool. In particular,
a strikingly high level of similarity between these two trees may be an indicator of a good
fit. Most of themodel diagnostics or goodness of fit testing strategies are based on residuals
that measure the distance between observed and fitted values and small residuals are asso-
ciated with a good fit. Our model selection criteria are based on the distance between the
observed and predicted cluster trees. The distance describes the similarity/dissimilarity of
the observed classification and the classification based on the predicted model. We adopt
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Table 1. Number of pairs of responses classified in different or same cluster by observed
and predicted trees.

Predicted tree

Different cluster Same cluster

Observed tree Different cluster A00 A01
Same cluster A10 A11

Jaccard (J) index [16] and Fowlkes and Mallows (FM) measure [17] to measure this dis-
tance. They measure the level of similarity between the two cluster trees. Our choice of
distance measures is motivated by the fact that these two measures are more sensitive to
dissimilarities between the clusterings [18]. Objective function in the proposed criteria is
the distance between the observed classification and classification based on the predicted
model. Objective functions in information theoretic model selection criteria are Kull-
back–Leibler distance. We think preceding objective function is more appropriate when
the modelling purpose is classification. This idea applies to all categorical models such as
probit and multinomial regressions which are also model based means of classification.
Refer to [19–21] for examples of such models being used as classification tools.

Our approach is explained as follows. As seen in Table 1, let A00 be the number of pairs
classified in different clusters by both observed and predicted trees, A01 be the number
of pairs put in the different clusters by the observed tree but in the same cluster by the
predicted tree, A10 be the number of pairs put in the same cluster by the observed tree but
in different clusters by the predicted tree and finally A11 be the number of pairs classified
in the same cluster by both observed and predicted trees.

J and FM are given below. Higher J and FM or equivalently lower (1-J) and (1-FM) are
associated with stronger similarity between the two trees.

J = A11

A11 + A10 + A01
(3)

FM = A11√
(A11 + A10)(A11 + A01)

. (4)

Lower {AIC, AICc, CAIC, BIC, ICOMP}, {1-J and 1-FM} lead to more plausible models.
Below we develop a class of cluster tree based model selection criteria by penalizing 1-J
and 1-FM.

2.1. Construction of cluster tree basedmodel selection criteria

Our initial simulations showed that 1-J and 1-FM decrease with increasing number of
covariates. That is, they have a tendency to select more complex models. In order to avoid
favouring overfitting models, they should be penalized for the number of parameters.
Penalizing 1-J and 1-FM (i.e. the distance between the predicted and observed clusters)
is in spirit similar to penalizing the prediction loss function (i.e. total difference between
the predictions and the observations) in Muller and Welsh [22] and Salibian-Barrera and
Van Aelst [23].
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Desired properties of a penalty are that (i) it should be an increasing function of the
number of parameters and (ii) it should also increase by the sample size but with a slower
rate. Figure 1 shows the values of the model selection criteria by d, the number of logis-
tic regression coefficients. As seen in the figure, behaviours of AIC, AICc, CAIC, BIC and
ICOMP are compatible with these properties. The slopes of CAIC and BIC are compara-
tively steeper implying better handling of overfitting problems. In other words, they choose
the truemodel most of the times, which refers to their consistency based onDefinition 3.1.

Let CCJ and CCFM denote the CC based on J and FM respectively. We propose the
following:

CCJ = (1 − J) + cn (5)

CCFM = (1 − FM) + cn (6)

where cn is a penalty term. Qian and Field [24] showed that amodel selection criterion that
consists of−2log likelihood and a penalty term is strongly consistent if the penalty term is
an increasing function of the model dimension and has an order higher thanO (log log n).
Based on these results, we propose the following two penalty terms, cn1 = (pulogn)/100
and cn2 = (pulog logn)/100, where p is the number of regression coefficients (i.e. model
dimension) and u is associated with the rate of decrease in 1-FM and 1-Jaccard (we set
it at 1 based on a small simulation study). They are divided by 100 to preserve the orig-
inal interpretation of J and FM measures as a measure between the two trees. Clustering
based criteria with cn1 are named as CCFM1 and CCJ1 whereas those with cn2 are named as
CCFM2 and CCJ2. Figure 2 presents the behaviour of new penalized criteria as the number
of parameters increase and are in line with the common criteria given in Figure 1.

3. Comparison of model selection criteria

In this section, we review the basic evaluation criteria to assess and compare the perfor-
mances of model selection criteria. Consistency and efficiency are used to evaluate the

Figure 1. Common criteria versus number of parameters.
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overall performance (whenmodelling purpose is unspecified). Classification performance
is evaluated using true classification rate (TCR), sensitivity and specificity. In addition, we
define consistency for nonlinear logistic models in Section 3.1.

3.1. Consistency

Amodel selectionmethod isweakly consistent if the probability of themethod selecting the
true model in the candidate model set tends to 1 as n → ∞. It is strongly consistent if the
method selects the truemodel in the candidatemodel set with probability 1. It is very likely
in real-life applications that candidate model set may not include the true model. Then the
concept of consistency is defined in terms of the model selection method selecting the
model in the candidate set that has the minimum Kullback–Leibler (KL) distance to the
true model. Below lists the weak and strong consistency definitions used in the following
section. First two definitions are found in the literature (e.g. [25]). Definition 3 is a new
addition and extends the definition of consistency to nonlinear model selection.

Definition 3.1 (Strong Consistency): Let M0 be the true model and M0 ∈ C, where C
is the set of candidate models. A model selection criterion Rn(.) is consistent if, for any
Mk ∈ C, Rn(Mk) − Rn(M0) ≥ 0 almost surely (a.s.) as n → ∞.

Definition 3.2 (Weak Consistency): Let M0 be the true model and M0 �∈ C. Let
KL(M1,M2) be the Kullback–Liebler distance between any two models. Let MJ ∈ C such

Figure 2. Cluster tree based criteria versus number of parameters.
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that minMk∈C KL(Mk,M0) = KL(MJ ,M0). A model selection criterion Rn(.) is weakly
consistent, if the probability of Rn(.) selectingMJ converges to 1 as n → ∞.

AIC type of criteria are proven to be weakly consistent, whereas CAIC and BIC are
strongly consistent [11,24,25].

Definition 3.3 (Strong Consistency): LetM0 be the true nonlinear model with a compli-
cated structure and M0 �∈ C. Let MJ ⊂ C be the set of polynomials well approximating
M0 such that KL(Mj,M0; j ∈ J) ≤ c, where c is a known constant and MJ is a subset
of ‘correct’ models. A model selection criterion Rn is consistent if, for any Mk �∈ MJ ,
Rn(Mk) − Rn(Mj) ≥ 0 almost surely (a.s.) n → ∞.

A differentiable nonlinear function can always be well approximated by a polynomial of
order p. Therefore, there is a true polynomial with an order p that is equivalent to the true
nonlinear model with a complicated structure (M0). MJ is the set of fitted polynomials
that are best fitting among all the models in C.

To the best of our knowledge, consistency of model selection methods in nonlinear
logistic regression has not been addressed in the literature. Here we extend the consistency
theorem of Qian and Field [24] for linear logistic regression to nonlinear logistic regres-
sion. We assume that simplest correct polynomial model is the model with minimum KL
distance to the true model. Related axiom is given in Appendix C.

Conditions: Let X = (X1, . . . ,Xn)
T be a single explanatory variable. Let D =

[1 X X2 X3 · · ·XP] be the design matrix in a p-order polynomial logistic regression. Let
h(η) = exp(η)/(1 + exp(η)).

(C.1) Columns of D are linearly independent.
(C.2) E(DDT) is positive definite.
(C.3) E(�0(1 − �0)DDT) and E(exp(−b‖D‖)�0(1 − �0)DDT) are positive definite

where �0 = h(DTβ0) with β0 being the true coefficients of the correct approximat-
ing polynomial with minimum order.

(C.4) E(‖D‖2+κ) < ∞ for some κ > 0.
(C.5) supkmk < ∞ wheremk is the number of parameters in the model.

Theorem: Suppose conditions (C.1)–(C.5) hold. Then, if the order of the penalty term is
greater than O(loglogn), then model selection criterion Rn(.) is strongly consistent.

Proof: Under conditions (C.1)–(C.5), following hold:

(C.1) limn→∞ λk(In(β0)) = ∞, k = 0, . . . , p. Also there exists some constant d0 > 0 such
that 0 < λp(In(β0)) ≤ d0λ1(In(β0)).

(C.2) δn(loglogλp(In(β0)))
1/2 = o(1).

(C.3) d1n ≤ λp(In(β0)) ≤ d2n holds for some positive constants d1 and d2.
(C.4) d3n ≤ λp(Xt

nMnXn) ≤ d4n for some positive constants d3 and d4.
(C.5) Let b = 1

2 min1≤i≤pα0
|β0(α0)| where α0 is the correct model in C with the

minimum dimension and β0(α0)i is the ith component of β0(α0). Also let
Qn = diag(m1 e−‖x1‖ × π01(1 − π01), . . . ,mn e−‖xn‖ × π0n(1 − π0n) with π0k(k =
1, . . . , n) being the true value of πk. Then there exists a constant d5 > 0 such that
λ1(Xt

nMnXn) ≤ d5n.
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Above, β0(M) are the true coefficients in the true polynomial that correspond to
the terms Xk, k = 1, . . . , p, in the fitted pth order polynomial M ∈ C and λ is the
vector of eigenvalues of a p × p symmetric matrix. Then, 0 ≤ log L(β̂(M) |Y ,X) −
log L(β0(m) |Y ,X) = O(loglogn) a.s. by Qian and Field [24]. Hence, 0 ≤ Rn(β0(M) −
Rn(β̂(M)) = mM(log L(β̂(M) |Y ,X) − log L(β0(M) |Y ,X)) + (C(n, h(X,β0)) − C(n,
XTβ̂)) = O(loglogn) + O(vn), where vn > loglogn, h(X,β0) is the true non-linear canon-
ical predictor,XT β̂ is fitted estimated canonical polynomial predictor andC(.,.) is a penalty
function. �

3.2. Efficiency

Efficiency is defined in terms of squared loss and given by L = ∑
E((Ŷ − Ytrue)

2 |Yobs).
A model selection criteria is said to be efficient if the probability of choosing the model
with minimum loss tends to 1 as n → ∞ [25]. The efficiency definition for logistic model
selection criteria is given as follows.

Definition: Let Lmin be the minimum loss among the candidate models, and let L0 be
the loss of a model chosen by a particular criterion. The model selection criterion Rn(.)
is efficient, if Lmin/L0 converges to 1 in probability as n → ∞. Based on this definition,
Claeskens and Hjort [25] showed that AIC and AICc are efficient.

3.3. TCR, sensitivity, specificity

In various different disciplines, logistic regression is used as a classification tool [26–28].
Classification performance of a particular model is assessed by its TCR, sensitivity and
specificity. Let nij (i = 0, 1, j = 0, 1) be the number of subjects that are in cluster i based
on their observed value and in j based on their predicted output. Then, true classification
rate, sensitivity and specificity are

TCR = n00 + n11
n00 + n01 + n10 + n11

(7)

sensitivity = n11
n10 + n11

(8)

specificity = n00
n00 + n01

. (9)

4. Simulation studies

In this section, we present our extensive Monte Carlo simulation studies that investigated
the performances of information and cluster tree based criteria in binary logistic regression
selection under different scenarios adjusted for sample sizes and effect sizes. The per-
formances are examined in two major settings depending on whether the true model is
included in the candidate set (setting A) or not (setting B). For each, we tailored different
realistic scenarios (cases). For setting A, we consider three cases that are common in prac-
tice. Case 1 is model selection over a candidate set of linear and quadratic models while
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case 2 is over a set of main and interaction models. Finally, case 3 is the selection over a set
of linear nested models. In setting B, we reconsider the linear nested model case.

Considered sample sizes are n=100,500 or 1000 representing relatively small, moder-
ate and rather large samples respectively, particularly in biological and economical studies.
Binary response data Yi are generated from Be(pi) where pi = P(Yi = 1), for i = 1, . . . , n,
as seen below. Each experiment is repeated 1000 times. Performances are evaluated using
consistency, efficiency, TCR, sensitivity and specificity. Consistency and TCR results are
given here while the others are found in Appendix A.2. Frequency of a model selection
criterion selecting the true model converging to 1 with increasing n in a simulation study
indicates strong consistency. Consistency and efficiency results provide information about
the overall performances of model selection criteria. TCR/sensitivity/specificity on the
other hand provide information about their specific performance when the modelling
purpose is classification in particular.

Setting A: Candidate Model Set Includes the True Model
Case 1: Linear and Quadratic Models
True model is logit(pi) = β0 + β1xi + β2x2i , where XĩU(−3, 3). Three different true

parameter sets are considered for (β0,β1,β2) implying models with different degrees of
nonlinearity (see Figure A1 in Section A.1.1). These are (1.138, 1.256, 0.0038) for Model
1, (−2.742, 0.722, 0.391) for Model 2 and (−5.733, −0.275, 1.056) for Model 3. The aim
of the current simulation study is twofold; comparison of the performances of the model
selection criteria with respect to sample size and level of nonlinearity of the underlying
true model. Candidate model set consists of the following models.

1. logit(p(Yi = 1 | xi)) = β0 + β1xi + β2x2i
2. logit(p(Yi = 1 | xi)) = β0 + β1xi.

Finite sample properties of the model selection criteria in terms of consistency and TCR
are given in Tables 2 and 3 respectively. In Table 2, notice that if the true underlying model
is strictly nonlinear (model 3), all model selection criteria converge to 1 fast. For model 2
where true nonlinearity is less severe, classification based criteria seem to have slower con-
sistency. Overall, among the information based criteria, ICOMP seems to be the best one.
AIC and AICc perform better than CAIC and BIC. AIC is consistent when the generating
model is the extended model [11]. Table A1 indicates similar results in terms of efficiency.
According to Table 3, cluster tree based criteria with penalty term cn2 seemmore preferable

Table 2. Frequency of selecting the true model out of 1000 replicates.

Model 1 Model 2 Model 3

Criterion n= 100 n= 500 n= 100 n= 500 n= 100 n= 500

AIC 161 192 897 1000 1000 1000
AICc 151 188 892 1000 1000 1000
CAIC 84 67 859 1000 1000 1000
BIC 42 18 790 1000 1000 1000
ICOMP 218 304 916 1000 1000 1000
CCFM1 82 10 454 371 975 999
CCFM2 186 155 583 684 989 1000
CCJ1 100 27 508 473 985 1000
CCJ2 198 178 599 732 995 1000
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Table 3. Monte Carlo average of TCR.

Model 1 Model 2 Model 3

Criterion n= 100 n= 500 n= 100 n= 500 n= 100 n= 500

AIC 0.717 0.734 0.763 0.771 0.829 0.825
AICc 0.716 0.734 0.763 0.771 0.829 0.825
CAIC 0.717 0.736 0.763 0.771 0.829 0.825
BIC 0.716 0.735 0.762 0.771 0.829 0.825
ICOMP 0.717 0.736 0.762 0.771 0.829 0.825
CCFM1 0.716 0.735 0.753 0.740 0.831 0.819
CCFM2 0.718 0.737 0.768 0.770 0.829 0.825
CCJ1 0.715 0.735 0.761 0.750 0.834 0.824
CCJ2 0.719 0.737 0.768 0.772 0.829 0.825
TCR of true model 0.716 0.734 0.763 0.771 0.829 0.825

in this scenario. cn1, on the other hand, seems to overpenalize the model for large number
of parameters (the quadratic models in this case). Overall, CCFM2 and CCJ2 have slightly
better classification properties than the standard criteria.

Case 2: Main and Interaction Models
True model is logit(pi) = β0 + β1xi + β2di + β3xdi, where XĩU(−3, 3) and dĩBe(0.5),

i = 1, . . . , n. Three different true parameter settings are considered for (β0,β1,β2,β3)
implying models with different levels of interaction (see Figure A2). These are (−1.702,
0.135, 0.269, 0.0898) for Model 1, (−1.702, 0.135, 0.693, 0.231) for Model 2 and (−1.702,
0.135, 1.792, 0.597) for Model 3. The aim of the current simulation study is twofold; com-
parison of the performances of the model selection criteria with respect to sample size and
true level of interaction. In Figure A2, line d=0 represents the model without d. The fur-
ther away the line from d=0 line is, the more pronounced effect the interaction has. Three
independent simulation experiments are carried out corresponding to the three different
true models considered. In each experiment, candidate model set consists of the twomod-
els that are with and without interaction. Candidate model set consists of the following
models.

1. logit(p(Yi = 1 | xi)) = β0 + β1xi + β2di + β3xdi
2. logit(p(Yi = 1 | xi)) = β0 + β1xi.

Finite sample properties of themodel selection criteria are given in Tables 4 and 5. Accord-
ing to Table 4, rates of consistency of model selection criteria depend on the true nature
of the underlying model. For instance, if the data inherit a profound true interaction, con-
vergence to 1 is much faster. Overall, ICOMP outperforms the rest. One striking result is
that BIC is underperforming when used for interaction models. Performances of CCFM2
and CCJ2 are notably better than AIC type criteria particularly for small samples such
as n=100. Results regarding efficiency are given in Table A4 and in the similar manner.
According to Table 5,CCFM2 andCCJ2 overall outperform the rest. Among the information
based criteria, ICOMP outperforms the others (except under Model 3). Cluster tree based
criteria have relatively lower sensitivity (except Model 3) and higher specificity (Tables A5
and A6 respectively).

Case 3: Linear Nested Models
Comparison of nested models is common in various many applications. Two regres-

sion models are nested if one can be transformed to the other by constraining some of the
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Table 4. Frequency of selecting the true model out of 1000 replicates.

Model 1 Model 2 Model 3

Criterion n= 100 n= 500 n= 100 n= 500 n= 100 n= 500

AIC 212 412 504 983 998 1000
AICc 185 403 471 983 996 1000
CAIC 73 128 262 877 979 1000
BIC 32 35 146 697 951 1000
ICOMP 375 644 690 996 999 1000
CCFM1 314 164 414 297 783 599
CCFM2 558 580 671 835 958 996
CCJ1 380 279 473 407 827 710
CCJ2 566 603 678 854 963 997

Table 5. Monte Carlo average of TCR.

Model 1 Model 2 Model 3

Criterion n= 100 n= 500 n= 100 n= 500 n= 100 n= 500

AIC 0.556 0.556 0.586 0.619 0.680 0.676
AICc 0.554 0.555 0.584 0.619 0.680 0.676
CAIC 0.545 0.539 0.569 0.612 0.680 0.676
BIC 0.537 0.529 0.557 0.600 0.679 0.676
ICOMP 0.569 0.573 0.597 0.620 0.680 0.676
CCFM1 0.583 0.553 0.591 0.584 0.664 0.637
CCFM2 0.597 0.588 0.615 0.619 0.678 0.676
CCJ1 0.588 0.564 0.597 0.592 0.670 0.648
CCJ2 0.596 0.586 0.614 0.621 0.680 0.676
TCR of true model 0.593 0.584 0.611 0.620 0.680 0.676

regression coefficients to zero. When the candidate set consists of less and more saturated
models compared to the true model, analyst is faced with potential overfitting and under-
fitting problems. Some of the existing criteria such as AIC and AICc tend to overfit due to
moderate penalty terms. Here simulations were run for sample sizes of 500 and 1000 due
to convergence problems encountered when n=100. True data generating mechanism is
logit(P(Yi = 1 | xi)) = 2.5 + 0.5xi1 + 0.8xi2 + xi3 + 1.2xi4 − 4.33xi5, where xijs are from
U(0, 6). Regression coefficients are set so that cases and controls are distributed equally in
the sample. Candidate model set includes the following models.

1. logit(P(Yi = 1 | xi)) = β0 + β1xi1
2. logit(P(Yi = 1 | xi)) = β0 + β1xi1 + β2xi2
3. logit(P(Yi = 1 | xi)) = β0 + β1xi1 + β2xi2 + β3xi3
4. logit(P(Yi = 1 | xi)) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4
5. logit(P(Yi = 1 | xi)) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5
6. logit(P(Yi = 1 | xi)) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + β6xi6
7. logit(P(Yi = 1 | xi)) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + β6xi6 + β7xi7.

The results are given in Tables 6 and 7. According to Table 6, the performances of BIC and
CAIC are better than the others. AIC and AICc perform rather poorly due to the moderate
penalty terms. It is known that AIC tends to overfit [4,5]. ICOMP underperforms relative
to CAIC and BIC. Cluster tree based criteria are performing satisfactorily particularly for
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Table 6. Frequency of selecting the true model out of
1000 replicates.

Criterion n= 500 n= 1000

AIC 771 760
AICc 780 763
CAIC 937 967
BIC 982 994
ICOMP 828 828
CCFM1 1000 1000
CCFM2 938 974
CCJ1 997 1000
CCJ2 833 912

Table 7. Monte Carlo average of TCR.

Criterion n= 500 n= 1000

AIC 0.912 0.895
AICc 0.913 0.895
CAIC 0.913 0.893
BIC 0.914 0.894
ICOMP 0.913 0.895
CCFM1 0.914 0.894
CCFM2 0.916 0.894
CCJ1 0.914 0.894
CCJ2 0.916 0.895
TCR of true model 0.914 0.894

large sample. CCwith cn1 outperform the others. They penalize theunnecessary parameters
adequately. Finite sample consistency according to Definition 3.1 is observed for all the
criteria except AIC and its versions. Also, all criteria seem to be efficient (see Table A7).
According to Table 7, in general, cluster tree based criteria have higher TCR especially for
moderate sample sizes such as n=500. Monte Carlo average of TCR for each criterion are
similar to the TCR of the true model. For the set of overfitted candidate models, cluster
tree based criteria give higher TCR than the true model.

Setting B : Candidate Model Set Does not Include the True Model
Case 1: Linear Nested Models
We reconsider Case 3 in Setting A with the true data generating model given therein

and the candidate model set that excludesModel 5. In this case, a model selection criterion
is consistent if the probability of selecting the model with the smallest Kullback–Leibler
distance converges to 1 as n goes to ∞. The results are given in Tables 8 and 9. First, BIC
should be neglected in this case as it is based on the assumption that true model is in the
candidate set [4]. According to Table 8, among the traditional model selection criteria,
CAIC has the best performance. This is again an indication for handling the overfitting
problem better than the others. CCFM1 and CCJ1 perform better than all the information
based criteria. They guard against overfitting unlike AIC and AICc.

Results in Table 9 are similar to those in Table 7, when the candidate set includes both
overfitted and underfitted models and when it has only overfitted models. When only
underfitted models exist in the candidate set, TCR decreases for each criterion. In that
case, common criteria perform better than cluster based criteria.
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Table 8. Frequency of selecting the model with minimum
KL distance out of 1000 replicates.

Tool n= 500 n= 1000

AIC 773 781
CAIC 897 907
AICc 782 782
BIC 939 937
ICOMP 813 816
CCFM1 948 924
CCFM2 884 925
CCJ1 946 945
CCJ2 795 862

Table 9. Monte Carlo average of TCR.

Criterion n= 500 n= 1000

AIC 0.913 0.894
AICc 0.913 0.894
CAIC 0.913 0.892
BIC 0.913 0.892
ICOMP 0.913 0.894
CCFM1 0.912 0.882
CCFM2 0.914 0.891
CCJ1 0.913 0.890
CCJ2 0.916 0.892

5. Application

We applied the model selection methods considered herein on data set obtained in a
research conducted in Ankara Oncology Research and Education Hospital. The hospi-
tal which is in the capital city Ankara was founded in 1956 by Turkish Cancer Research
Organization and is the leading national cancer hospital that admits patients from across
the country. The data set includes information on disease characteristics, risk factors and
adjusting covariates of 249 womenwith breast cancer and 251 without. It was first analysed
by Dogan et al. [29] to investigate the etiologic heterogeneity of breast cancer in Turkish
population. Here our aim is to find the best classifying model which eventually can be
used by health professionals to classify the Turkish women under risk as high versus low
risk given their risk factors.

In what follows, the significant risk factors given in Dogan et al. [29] as well as the
general adjusting factors for breast cancer are considered for the modelling. Namely, age
(AGE: continuous), body mass index (BMI: continuous), menstrual regularity (MR: cate-
gorical, 1: regularity in pre-menopausal period, 2: irregularity in pre-menopausal period,
3: perimenopausal period, 4: post-menopausal period), menstruation age (MA: continu-
ous), age at first birth (AFB: continuous), smoking habit (S: categorical, 0: nonsmoker, 1:
smoker), hormone replacement therapy (HRT: categorical, 0: no HRT, 1: HRT with estro-
gen receptor, 2: HRT with progesterone receptor, 2: both), family history (FH: categorical,
0: no family history, 1: first-order relative, 2: second-order relative), mammography (M:
categorical, 0: never had a mammography, 1: twice a year), cystite (CYS: categorical, 0: not
have a cyst history, 1: have a cyst history) and biopsy status (BS: categorical, 0: not had a
biopsy, 1: had a biopsy). Figure 3 gives the empirical scatter plot of proportion of cases in
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Figure 3. P(Y = 1) versus average BMIs.

each BMI group versus averages of grouped BMIs and displays a nonlinear trend. Hence
the suitable models of choices are:

M1 : logit(P(Y = 1))i = β0 + β1AGEi + β2BMIi + β3MR1i + β4MR2i + β5MR3i
+ β6MAi + β7AFBi + β8Si + β9HRT1i + β10HRT2i
+ β11HRT3i + β12FH1i + β13FH2i + β14Mi + β15CYSi
+ β16BSi

M2 : logit(P(Y = 1))i = β0 + β1AGEi + β2BMIi + β3BMI2i + β4MR1i + β5MR2i
+ β6MR3i + β7MAi + β8AFBi + β9Si + β10HRT1i
+ β11HRT2i + β12HRT3i + β13FH1i + β14FH2i + β15Mi

+ β16CYSi + β17BSi

whereM1 is a fully linear model whereM2 is quadratic in BMI. Output for these candidate
models are given in Tables A10 and A11. * signs for significant covariates at 0.05 signifi-
cance level. Model selection criteria and p values of the Hosmer and Lemeshow test (for
the global significance of the model) are given in Table 10. According to the p values, both
models are significant where significance of M2 is stronger. In the table, selected models
are marked in bold. Accordingly, information based criteria, CCFM2 and CCJ2 select M2,
whereas CCFM1 and CCJ1 select M1. Recalling Table 2, ICOMP outperformed the other
criteria in determining the need for a quadratic term whereas CCFM1 and CCJ1 failed to
determine nonlinearity in themodel. Here all the criteria, exceptCCFM1 andCCJ1, are con-
sistent with the choice of ICOMP. Only CCFM1 and CCJ1 pick M1. This result is consistent
with Table 2 as CCFM1 and CCJ1 perform worse than the others. We also ran a simula-
tion study to reveal the finite sample classification properties of the criteria for n=500
(size of the observed dataset) when the candidate set of linear and quadratic logistic mod-
els excludes the underlying true nonlinear logistic model. Monte Carlo average of the TCR
are equal for bothmodels.Monte Carlo average of sensitivity rates of themodels selected by
information based criteria, CCFM2 and CCJ2, were slightly better than those of the rest. On
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Table 10. Model selection for the breast cancer study.

Criterion M1 M2

AIC 567.108 561.596
AICc 568.378 563.018
CAIC 602.933 599.527
BIC 638.757 637.459
ICOMP 638.757 637.459
TCR 0.706 0.706
Sensitivity 0.829 0.928
Specificity 0.582 0.486
CCFM1 1.460 1.496
CCFM2 0.715 0.706
CCJ1 1.632 1.669
CCJ2 0.886 0.879
p-value 0.970 0.191

the other hand, the models selected by CCFM1 and CCJ1 have better Monte Carlo average
of specificity rates than others.

6. Conclusion

Ourmain aim here was to draw attention to the importance ofmodelling purpose inmodel
selection. We provided a newmodel selection approach for logistic regression models that
is particularly useful when themodelling purpose is classification.We viewed the predicted
and observed binary responses as two different cluster trees and employed clustering tree
distances to assess the classification performances of logistic regressionmodels. The special
cases considered in the simulation study constitute the basis of modelling endeavours in
practice. The simulations showed that overall performances of information based criteria
depend on the penalty term. They also showed that when the modelling purpose lies in
classification, cluster based criteria lead to best classifying model. Specific results are listed
below. When the modelling purpose is unspecified (overall performance), results are as
follows:

• When the candidate set includes rather parsimonious models (cases 1 and 2), ICOMP
outperform all the others. Among cluster tree based criteria, CCFM2 and CCJ2 are better
than CCFM1 and CCJ1.

• When the candidate set includes both parsimonious and saturated models (case 3),
among information based criteria CAIC and BIC perform better than AIC, AICc and
ICOMP.

• When the candidate set includes both parsimonious and saturated models, overall,
cluster tree based criteria perform better than information based criteria.

When the modelling purpose is classification in particular, results are as follows:

• CCFM2 and CCJ2 perform at least as good as or better than standard information based
criteria.

Also our application section leads to important results. Accordingly, CC with smaller
penalty term is more useful for data analysis with many covariates under investigation.
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Appendices

Appendix 1. Additional output for Section 4

A.1 Data generatingmodels for Section 4

A.1.1 Models for Case 1

Figure A1. The levels of lack of linearity in the logit function.
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A.1.2 Models for Case 2

Figure A2. The levels of interaction in the logit function.

A.2 Simulation results

A.2.1 Results for Case 1

Table A1. Average observed efficiency rates.

Model 1 Model 2 Model 3

Tool n= 100 n= 500 n= 100 n= 500 n= 100 n= 500

AIC 0.996 0.999 0.999 1 1 1
AICc 0.996 0.999 0.998 1 1 1
CAIC 0.994 0.999 0.998 1 1 1
BIC 0.993 0.998 0.995 1 1 1
ICOMP 0.996 0.999 0.999 1 1 1
CCFM1 0.992 0.998 0.951 0.939 0.988 0.999
CCFM2 0.993 0.999 0.964 0.969 0.995 1
CCJ1 0.993 0.998 0.957 0.949 0.993 1
CCJ2 0.994 0.999 0.965 0.974 0.998 1

Table A2. Monte Carlo average of sensitivity.

Model 1 Model 2 Model 3

Tool n= 100 n= 500 n= 100 n= 500 n= 100 n= 500

Sensitivity of true model 0.676 0.703 0.582 0.586 0.738 0.734
AIC 0.685 0.703 0.585 0.586 0.738 0.734
AICc 0.684 0.703 0.586 0.586 0.738 0.734
CAIC 0.686 0.705 0.585 0.586 0.738 0.734
BIC 0.684 0.704 0.592 0.586 0.738 0.734
ICOMP 0.681 0.703 0.583 0.586 0.738 0.734
CCFM1 0.685 0.704 0.624 0.653 0.738 0.728
CCFM2 0.678 0.701 0.600 0.610 0.738 0.734
CCJ1 0.683 0.704 0.615 0.641 0.741 0.732
CCJ2 0.680 0.700 0.596 0.602 0.737 0.734
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Table A3. Monte Carlo average of specificity.

Model 1 Model 2 Model 3

Tool n= 100 n= 500 n= 100 n= 500 n= 100 n= 500

Specificity of true model 0.737 0.744 0.822 0.819 0.847 0.839
AIC 0.734 0.747 0.820 0.819 0.847 0.839
AICc 0.733 0.747 0.819 0.819 0.847 0.839
CAIC 0.733 0.749 0.819 0.819 0.847 0.839
BIC 0.732 0.748 0.815 0.819 0.847 0.839
ICOMP 0.736 0.748 0.820 0.819 0.847 0.839
CCFM1 0.732 0.748 0.791 0.759 0.847 0.834
CCFM2 0.738 0.752 0.819 0.811 0.848 0.839
CCJ1 0.731 0.748 0.805 0.775 0.850 0.839
CCFM2 0.739 0.752 0.821 0.816 0.848 0.839

A.2.2 Results for Case 2

Table A4. Average observed efficiency rates.

Model 1 Model 2 Model 3

Tool n= 100 n= 500 n= 100 n= 500 n= 100 n= 500

AIC 0.999 0.998 0.989 0.999 0.999 1
AICc 0.999 0.998 0.987 0.999 0.999 1
CAIC 0.999 0.994 0.975 0.998 0.999 1
BIC 0.998 0.992 0.965 0.994 0.996 1
ICOMP 0.999 0.999 0.995 0.999 0.999 1
CCFM1 0.998 0.993 0.975 0.973 0.960 0.912
CCFM2 0.999 0.997 0.988 0.995 0.994 0.999
CCJ1 0.998 0.994 0.979 0.978 0.969 0.937
CCJ2 0.999 0.997 0.988 0.995 0.995 0.999

Table A5. Monte Carlo average of sensitivity.

Model 1 Model 2 Model 3

Tool n= 100 n= 500 n= 100 n= 500 n= 100 n= 500

Sensitivity of true model 0.420 0.416 0.441 0.421 0.568 0.558
AIC 0.471 0.453 0.467 0.421 0.569 0.558
AICc 0.472 0.454 0.468 0.421 0.571 0.558
CAIC 0.474 0.475 0.478 0.429 0.569 0.558
BIC 0.478 0.482 0.480 0.440 0.573 0.558
ICOMP 0.456 0.434 0.453 0.421 0.568 0.558
CCFM1 0.429 0.451 0.438 0.448 0.549 0.529
CCFM2 0.420 0.411 0.430 0.418 0.564 0.558
CCJ1 0.426 0.434 0.435 0.439 0.554 0.534
CCJ2 0.419 0.411 0.429 0.418 0.565 0.558
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Table A6. Monte Carlo average of specificity.

Model 1 Model 2 Model 3

Tool n= 100 n= 500 n= 100 n= 500 n= 100 n= 500

Specificity of true model 0.647 0.638 0.673 0.690 0.725 0.724
AIC 0.579 0.591 0.628 0.689 0.724 0.724
AICc 0.578 0.589 0.626 0.689 0.723 0.724
CAIC 0.566 0.589 0.604 0.676 0.722 0.724
BIC 0.556 0.548 0.588 0.658 0.719 0.724
ICOMP 0.602 0.618 0.651 0.689 0.724 0.724
CCFM1 0.627 0.586 0.652 0.629 0.712 0.683
CCFM2 0.648 0.640 0.682 0.690 0.724 0.724
CCJ1 0.634 0.607 0.660 0.644 0.718 0.697
CCFM2 0.648 0.640 0.683 0.691 0.726 0.724

A.2.3 Results for Case 3

Table A7. Average observed efficiency
rates.

Tool n= 500 n= 1000

AIC 0.990 0.995
CAIC 0.984 0.991
AICc 0.990 0.995
BIC 0.982 0.991
ICOMP 0.988 0.994
CCFM1 0.980 0.990
CCFM2 0.981 0.991
CCJ1 0.980 0.990
CCJ2 0.983 0.991

Table A8. Monte Carlo average of sensitivity.

Tool n= 500 n= 1000

Sensitivity of true model 0.913 0.893
AIC 0.913 0.895
AICc 0.914 0.895
CAIC 0.913 0.892
BIC 0.914 0.893
ICOMP 0.913 0.895
CCFM1 0.913 0.893
CCFM2 0.915 0.894
CCJ1 0.914 0.893
CCJ2 0.916 0.895
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Table A9. Monte Carlo average of specificity.

Tool n= 500 n= 1000

Specificity of true model 0.914 0.895
AIC 0.912 0.896
AICc 0.913 0.896
CAIC 0.913 0.894
BIC 0.914 0.895
ICOMP 0.913 0.896
CCFM1 0.914 0.895
CCFM2 0.916 0.895
CCJ1 0.914 0.895
CCJ2 0.917 0.895

Appendix 2. Inference based on candidate models in Section 5

Table A10. Candidate model 1.

Factor OR 95% CI p value

Age 1.027 (0.998,1.057) 0.068
BMI 1.030 (0.987,1.075) 0.180
Menstrual reg1 2.617 (1.253,5.465) 0.010*
Menstrual reg2 13.872 (6.014,34.767) 0.000*
Menstrual reg3 5.103 (2.707,9.846) 0.000*
Menstruation age 0.957 (0.822,1.112) 0.565
Age at the first birth 1.006 (0.978,1.034) 0.680
Smoking 0.789 (0.495,1.257) 0.317
HRT1 0.419 (0.156,1.078) 0.075
HRT2 0.493 (0.227,1.044) 0.069
HRT3 4.941 (1.562,18.009) 0.009*
Family history1 1.321 (0.755,2.321) 0.330
Family history2 2.095 (0.750,6.044) 0.162
Mammography 0.315 (0.190,0.515) 0.000*
Cyst 0.318 (0.147,0.643) 0.002*
Pathology 3.044 (1.285,7.470) 0.013*

Table A11. Candidate model 2.

Factor OR 95% CI p value

Age 1.020 (0.992,1.051) 0.171
BMI 1.637 (1.171,2.322) 0.004*
BMI2 0.992 (0.987,0.998) 0.007*
Menstrual reg1 2.497 (1.186,5.254) 0.015*
Menstrual reg2 13.549 (5.847,34.060) 0.000*
Menstrual reg3 5.438 (2.862,10.592) 0.000*
Menstruation age 0.962 (0.825,1.121) 0.622
Age at the first birth 0.999 (0.971,1.029) 0.976
Smoking 0.783 (0.490,1.250) 0.304
HRT1 0.402 (0.149,1.043) 0.064
HRT2 0.466 (0.212,0.995) 0.052
HRT3 5.160 (1.598,19.127) 0.008*
Family history1 1.301 (0.739,2.300) 0.363
Family history2 2.357 (0.836,6.888) 0.109
Mammography 0.306 (0.184,0.502) 0.000*
Cyst 0.312 (0.145,0.636) 0.002*
Pathology 3.059 (1.283,7.559) 0.013*
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Appendix 3. Axiom for ‘Simplest correct polynomial has the smallest KL
divergence from the true nonlinear model’

Let correct model is the true model with a complicated nonlinear structure. An equivalent model is
infinite order polynomial model (from the Taylor series expansion of the true model) which we call
full model.

Let set of fitted models is a subset of polynomials with different finite orders. Some of the models
in this set are wrong models, some are correct.

Note that KL( f,g ), i.e. KL distance between the true f (the pdf under the logistic regression with
complicated non-linear predictor) and g (the pdf under the logistic regression with a predictor that
is a polynomial of order k) is a function of k and it has a unique minimum as illustrated in Figures 2
and 3 of [30] and Figure 2 of [31]. Let kmin be the solution of (d/dk)KL = 0. Then, polynomials
of order k where k ≥ kmin are correct models and the polynomial of order k = kmin (which is the
simplest polynomial) has the lowest KL distance.
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