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Abstract Multimodal and asymmetric bivariate circular data arise in several different
disciplines and fitting appropriate distribution plays an important role in the analysis of
such data. In this paper, we propose a new bivariate circular distribution which can be
used to model both asymmetric andmultimodal bivariate circular data simultaneously.
In fact the proposed density covers unimodality as well as multimodality, symmetry as
well as asymmetry of circular bivariate data. A number of properties of the proposed
density are presented. A Bayesian approach with MCMC scheme is employed for
statistical inference. Three real datasets and a simulation study are provided to illustrate
the performance of the proposed model in comparison with alternative models such
as finite mixture Cosine model.

Keywords Asymmetric distribution · Circular bivariate data · Multimodal distribu-
tion · Protein structure · Wind direction

1 Introduction

Current interest in bivariate directional distributions has increasedwith their important
applications in many different areas such as in modeling wind directions (e.g. Shieh
and Johnson 2005; Kato 2009) and structural protein bioinformatics (e.g. see Green
andMardia 2006; Mardia et al. 2007; Dahl et al. 2008; Shieh et al. 2011; Mardia 2013;
Fernández-Durán and Gregorio-Domínguez 2014). Here we give a brief historical sur-
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vey on and the current status of bivariate circular distributions. A general von Mises
bivariate circular model, which is referred as full bivariate vonMises distribution, was
introduced byMardia (1975a) in which correlation in circular context and dependence
on torus were well laid out. In terms of wrapped approach, Thompson (1975) men-
tioned wrapping the bivariate normal distribution doubly around the torus to obtain
a bivariate wrapped distribution. This approach was further elaborated by Wehrly
and Johnson (1980) and they obtained a family of bivariate distributions with speci-
fied marginal distributions. Rivest (1988), Singh et al. (2002) and Mardia et al. (2007)
considered submodels of the full bivariate vonMises distribution. More recently, Kato
and Pewsey (2015) proposed a five-parameter bivariate wrapped Cauchy distribution
as a unimodal model. Jones et al. (2015) developed a novel bivariate circular approach
based on copulae on the circle. Mardia et al. (2007), Lennox et al. (2009) and Mardia
(2013) are recent examples in the literature in which bivariate circular approaches
are developed for bioinformatical studies of the dihedral angles that summarizes the
structure of a protein. These distributions are symmetric and unimodal or bimodal.

Many bivariate circular datasets in the literature and ongoing researches include
multimodal and/or asymmetric features. This type of data have been analyzed using
a mixture of symmetric/asymmetric unimodal or bimodal circular distributions (e.g.
Mardia et al. 2007; Dahl et al. 2008; Ferreira et al. 2008). Special asymmetric circular
distributions are given in univariate circular context by e.g. Gatto and Jammalamadaka
(2007), Umbach and Jammalamadaka (2009), Abe and Pewsey (2011) and Kim and
SenGupta (2013). In terms of multivariate situations, recently, Kim et al. (2016)
developed a new multivariate distribution with specified marginals for the analysis
of bimodal asymmetric/ symmetric circular data. Their joint probability density func-
tion (pdf) is a function of marginal cumulative distribution functions which may be
difficult to obtain as most circular distribution functions do not have closed forms. Our
aim is to propose a general distribution for multimodal asymmetric bivariate circular
data. The proposed distribution is a combination of the asymmetric generalized von
Mises (AGvM) distribution introduced by Kim and SenGupta (2013) and the general-
ized von Mises distribution (GvM) (e.g. Cox 1975; Yfantis and Borgman 1982; Gatto
and Jammalamadaka 2007). Some important inferential features for GvM distribution
are presented in e.g. Yfantis and Borgman (1982). The proposed multimodal asym-
metric bivariate distribution will be called hereafter MABvM. The pdf of MABvM is
in a known form.

The remainder of the article is organized as follows. Section 2 introduces the
MABvM distribution and gives its properties. A Bayesian analysis of the model is
given in Sect. 3. In Sect. 4 we describe a small simulation study. Use of the distribu-
tion is illustrated in Sect. 5 on several examples including the protein dataset. Finally,
the last section includes concluding remarks.

2 The distribution specification

Let (�1,�2)
T and (θ1, θ2)

T be bivariate circular random variables and their realized
values respectively with joint pdf f�1,�2(θ1, θ2). The joint pdf can be factorized into
a marginal and a conditional density functions such as
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f�1,�2(θ1, θ2) = f�1|�2(θ1|θ2) f�2(θ2).

This is also a simplemethod for generating bivariate distributions and has been used
for obtaining dependent models. In this study, we consider AGvM (Kim and SenGupta
2013) and GvM (Gatto and Jammalamadaka 2007) distributions for f�1|�2(θ1|θ2) and
f�2(θ2), respectively. The pdf of AGvM(μ, κ1, κ2) distribution is

f�(θ) = 1

2πC
(

π
4 , κ1, κ2

) exp{κ1 cos(θ − μ) + κ2 sin(2θ − 2μ)}; θ ∈ [0, 2π),

(1)

where μ ∈ [0, 2π) is a location parameter, κ1 > 0 and κ2 ∈ [−1, 1] are concentra-
tion and skewness parameters, respectively. The three parameter model belongs to an
exponential family of distributions and can be used to model both asymmetric and
bimodal univariate data. The pdf of GvM(μ1, μ2, κ1, κ2) distribution is given below

f�(θ) = 1

2πC(δ, κ1, κ2)
exp{κ1 cos(θ − μ1) + κ2 cos(2θ − 2μ2)}; θ ∈ [0, 2π),

(2)

whereμ1 ∈ [0, 2π),μ2 ∈ [0, π) are location parameters, δ = μ1−μ2 and κ1, κ2 > 0
are the shape parameters. The GvM distribution covers unimodality as well as multi-
modality, symmetry as well as asymmetry in circular univariate data. The distributions
(1) and (2) are the extensions of the von Mises (vM) distribution. Also, (1) is a sub-
class of (2), i.e. AGvM(μ, κ1, κ2)=GvM(μ,μ + π/4, κ1, κ2) with restriction on κ2.
Following definition introduces a new multimodal and asymmetric bivariate circular
(MABvM) distribution.

Definition 2.1 A bivariate circular random variable (�1,�2) is said to follow the
MABvM distribution, if its density is given by

f�1,�2(θ1, θ2) = 1

4π2C(δ, κ1, κ2, κ3, κ4)

× exp{κ1 cos(θ1 − μ − ϕθ2) + κ2 sin(2θ1 − 2μ − 2ϕθ2)}
× exp{κ3 cos(θ2 − μ1) + κ4 cos(2θ2 − 2μ2)}, (3)

where 0 ≤ θ1, θ2 < 2π , 0 ≤ μ,μ1 < 2π , 0 ≤ μ2 < π , δ = μ1 − μ2, and
C(δ, κ1, κ2, κ3, κ4) is the normalizing constant that is defined in Proposition 2.2. Also
κ1, κ3, κ4 ≥ 0, ϕ ∈ [−1, 1] and κ2 ∈ [−1, 1].

The MABvM is a periodic distribution i.e. f�1,�2(θ1, θ2) = f�1,�2(θ1 + 2πm, θ2
+ 2πm) for any integer m. The parameter ϕ accounts for the statistical dependence
between �1 and �2: if ϕ = 0 then �1 and �2 are independent. In this case, �1
follows an AGvM(μ,κ1,κ2) distribution with the location parameter μ and �2 fol-
lows a GvM(μ1,μ2,κ3,κ4) distribution. The distribution has eight parameters where
μ, μ1 and μ2 are the location parameters. The parameters κ3 and κ4 are shape
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Fig. 1 Contour of MABvM(0, 0, 0, κ1, 0.5, 0.5, 0.5, 1) distribution with various values of κ1. a κ1 = 0,
b κ1 = 1, c κ1 = 5

Fig. 2 Contour of MABvM(0, 0, 0, 0.5, κ2, 0.5, 0.5, 1) distribution with various values of κ2. a κ2 = −1,
b κ2 = 0, c κ2 = 1

parameters. The parameters κ1 and κ2 model the circular association between �1
and �2. The role of κ1 and κ2 are illustrated by the two dimensional contours of
the MABvM(μ,μ1, μ2, κ1, κ2, κ3, κ4, ϕ) distribution given in Figs. 1 and 2. As seen
in these figures, as κ1 increases from 0 to 5 two dimensional contours get centered
around the θ1 = θ2 line. Similarly, as |κ2| increases, the mass centers around the
θ1 = θ2 line. Thus the association between two variables increases when κ1 or |κ2|
increases.

For κ1 = κ2 = κ3 = κ4 = 0 the distribution reduces to a bivariate uniform
distribution. For κ2 = 0 the MABvM is a combination of an AGvM conditional and
a vM marginal distribution. For κ4 = 0 the MABvM is a combination of a GvM
conditional and a vM marginal distribution and if κ2 = κ4 = 0 it is a combination of
two vM distributions. Listed below are the properties of MABvM.

(i) Normalizing Constant Here we give an expression for C(δ, κ1, κ2, κ3, κ4) in
terms of an infinite series, involving sequences of modified Bessel functions,
which can be computed efficiently using the algorithm of Amos (1974).
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Proposition 2.2 The normalizing constant in (3) is given by

C(δ, κ1, κ2, κ3, κ4) =
⎧
⎨

⎩
I0(κ1)I0(κ2) +

∞∑

j=1

I2 j (κ1)I j (κ2) cos

(
j

2π

)
⎫
⎬

⎭

×
{

I0(κ3)I0(κ4) +
∞∑

l=1

I2l(κ3)Il(κ4) cos(2lδ)

}

, (4)

where Im(·) is the modified Bessel function of the first kind and order m.

The proof is given in the Appendix.

(ii) Conditional andMarginalDistributionsConditional andmarginal distributions
of MABvM are given below which can be proved easily.

Proposition 2.3 Let (�1,�2) follow the MABvM with pdf (3). Then

(a) conditional distribution of�1 given�2 = θ2 is AGvM(μ+ϕθ2, κ1, κ2) as follows

f�1|�2(θ1|θ2) = 1

2πC
(

π
4 , κ1, κ2

) exp{κ1 cos(θ1 − μ − ϕθ2)

+κ2 sin 2(θ1 − μ − ϕθ2)}, (5)

where C
(

π
4 , κ1, κ2

)
is the normalizing constant that is defined in the Appendix,

−1 ≤ ϕ ≤ 1 shrinks the influence of �2 = θ2, κ1 ≥ 0 and κ2 ∈ [−1, 1] are
concentration and skewness parameters, respectively.

(b) conditional distribution of �2 given �1 = θ1 is proportional to f�1,�2(θ1, θ2)

in (3). As a special case when ϕ = 1 and μ = 0, conditional distribution of �2
given �1 = θ1 is obtained as

f�2|�1(θ2|θ1) = C2 exp{A1 cos(θ2) + B1 sin(θ2) + C1 cos(2θ2) + D1 sin(2θ2)},

where A1 = κ1 cos(θ1) + κ3 cos(μ1), B1 = κ1 sin(θ1) + κ3 sin(μ1), C1 =
κ2 sin(2θ1) + κ4 cos(2μ2), D1 = κ2 cos(2θ1) + κ4 sin(2μ2) and C2 is the nor-
malizing constant.

(c) marginal pdf of �2 is GvM(μ1, μ2, κ3, κ4) distribution in (2).
(d) marginal pdf of �1 does not have a known form. Thus we approximate it by using

Monte Carlo method as follows

f (θ1) ≈ 1

M

M∑

m=1

f�1|�2(θ1|θ2,m)

where {θ2,m}Mm=1 are independent observations from theGvM(μ1, μ2, κ3, κ4) dis-
tribution and f�1|�2(θ1|θ2,m) denotes the pdf of the AGvM(μ + ϕθ2,m, κ1, κ2)

distribution in (5).

123



368 Environ Ecol Stat (2018) 25:363–385

Proposition 2.3 (a) and (c) are straightforward since the normalizing constant in
Definition 2.1 is written as the product of the normalizing constants for the conditional
and marginal distributions. The marginal distribution of �2 and the conditional of �1
are quite flexible since AGvM and GvM can model either symmetric or asymmetric,
unimodal or bimodal distributions, depending on the values of its four parameters. For
κ4 = 0 the marginal distribution of �2 is a vM distribution.

There is a relationship between the proposed model and the specified conditional
models (Arnold and Strauss 1991) given in SenGupta (2004). The exponential part of
(3) can be written as

p′(θ1)

⎛

⎜
⎜
⎜⎜
⎝

m κ3 cos(μ1) κ3 sin(μ1) κ4 cos(2μ2) κ4 sin(2μ2) 0 0 0 0
0 0 0 0 0 c1 c2 0 0
0 0 0 0 0 −c2 c1 0 0
0 0 0 0 0 0 0 c3 c4
0 0 0 0 0 0 0 c4 c3

⎞

⎟
⎟
⎟⎟
⎠
q(θ2)

where c1 = κ1 cos(μ), c2 = κ1 sin(μ), c3 = κ2 cos(2μ),and c4 = −κ2 sin(2μ),

p′(θ1) = (1, cos(θ1), sin(θ1), cos(2θ1), sin(2θ1)) ,

q ′(θ2) = (1, cos(θ2), sin(θ2), cos(2θ2), sin(2θ2),

cos(ϕθ2), sin(ϕθ2), cos(2ϕθ2), sin(2ϕθ2)),

andm is a function of the other parameters. SenGupta (2004) has given an example of
specified conditionals model (Arnold and Strauss 1991) on the torus with joint density

f (θ1, θ2) = p′(θ1)Mq(θ2), (θ1, θ2) ∈ [0, 2π)2

Here p′(θ1) = (1, cos(θ1), sin(θ1)), q ′(θ2) = (1, cos(θ2), sin(θ2)) and

M =
⎛

⎝
m00 m01 m02
m10 m11 m12
m20 m21 m22

⎞

⎠

where m00 is a function of the other eight m jks. The exponential part of the proposed
distribution is similar to the joint pdf on the torus with vM conditionals in SenGupta
(2004). In addition, model (3) with many zero-elements has advantage as it reduces
the number of parameters.

(iii) Multimodality Distribution may be unimodal or multimodal, depending on the
parameter values. Multimodality conditions are given by the following proposi-
tion.

Proposition 2.4 The joint pdf (3) has two modes if κ1 < 2|κ2| or κ3 < 4κ4 and it has
four modes if κ1 < 2|κ2| and κ3 < 4κ4, otherwise it is a unimodal distribution for
κ1 �= 0 , κ2 �= 0, and κ4 �= 0.

The proof is given in the Appendix. Figure 3 provides a graphical illustration. Fig-
ure 3a–d represent different examples for varying (κ1,κ2,κ3,κ4).
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Fig. 3 Joint pdf of MABvM
(
0, π, π

2 , κ1, κ2, κ3, κ4, 1
)
. a (κ1, κ2, κ3, κ4) = (0.3, 1, 1, 1), b

(κ1, κ2, κ3, κ4) = (3, 1, 5, 1), c (κ1, κ2, κ3, κ4) = (0.3, 1, 5, 1), d (κ1, κ2, κ3, κ4) = (3, 1, 1, 1)

(iv) ExchangeabilityTwo random variables�1 and�2 are exchangeable if (�2,�1)

and (�1,�2) are identically distributed i.e. f�2,�1(θ2, θ1) = f�1,�2(θ1, θ2).
Based on Definition 2.1, it is clear that f�2,�1(θ2, θ1) �= f�1,�2(θ1, θ2). That is,
exchangeability does not hold. It means that the properties of the proposed distri-
bution is not invariant, similar to Shieh and Johnson (2005), under permutations
of its arguments. General definition of exchangeability can be found in De Finetti
(1972).

(v) Asymmetry If a multivariate distribution is symmetric then all marginals are
symmetric (Mardia et al. 2008). Conclusively, a multivariate distribution is asym-
metric if the mass is distributed asymmetrically with respect to a reference point
in at least one of its dimensions. Note that marginal pdf of �2 can be asymmetric
as a result of Proposition 2.3(d) which in turn leads to an asymmetric MABvM.
Then MABvM can be symmetric or asymmetric.
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(vi) Maximum EntropyMardia (1975b) introduced maximum entropy distributions
based on specifying the first marginal of the first variable and joint harmonics.
Accordingly, Sect. 2.3. inMardia (1975b), suppose that distributions defined over
a space S are to be represented by densities relative to some familiar measure
such as Lebesgue and Haar. Let tl , . . . , tq represent q given real valued functions
over S such that no linear combination of tl , . . . , tq is constant. If, for a density
function f (x),

i. S1 is the support of f (x) where x ∈ S1, S1 ⊂ S,
ii. E{ti (x)} = ai (fixed) , t = 1, . . . , q,

iii. The entropy is maximized,

Then f (x) should be of the form

f (x) = exp

{

b0 +
q∑

i=1

bi ti (x)

}

, x ∈ S1 (6)

provided there exist b0, b1, . . . , bq such that (6) satisfies (i) and (ii).
The proposed distribution (3) is a maximum entropy distribution subject to a1 =

E(cos(θ1) cos(ϕθ2)), a2 = E(sin(θ1) sin(ϕθ2)), a3 = E(cos(θ1) sin(ϕθ2)), a4 =
E(sin(θ1) cos(ϕθ2)), a5 = E(sin(2θ1) cos(2ϕθ2)), a6 = E(cos(2θ1) sin(2ϕθ2)),
a7 = E(cos(2θ1) cos(2ϕθ2)), a8 = E(sin(2θ1) sin(2ϕθ2)), a9 = E(cos(θ2)),
a10 = E(sin(θ2)), a11 = E(cos(2θ2)), and a12 = E(sin(2θ2)) taking specified val-
ues consistent with the expectations with respect to the proposed distribution. Since
Cosine and Sine functions are bounded, the ak , for k = 1, 2, . . . , 12 , exists. Also
we obtain b1 = b4 = κ1 cos(μ), b3 = −b2 = κ1 sin(μ), b5 = b7 = κ2 cos(2μ),
b6 = −b8 = κ2 sin(2μ), b9 = κ3 cos(μ1), b10 = κ3 sin(μ1), b11 = κ4 cos(2μ2), and
b12 = κ4 sin(2μ2).

3 Bayesian estimation

Weadopt Bayesianmethods based onMarkov chainMonteCarlo (MCMC) algorithms
to obtain statistical inference of a MABvM distribution. We use the hierarchical rep-
resentation of the MABvM for an efficient Gibbs sampling. Gibbs sampler provides a
way for generating samples from the posteriors that are specified up to a proportional-
ity. The scheme proceeds iteratively by generating variates in a cyclic manner from the
various full conditionals, specified up to proportionality, using suitably chosen initial
values for starting the process. The iterations are carried out until a systematic pattern
of convergence is achieved through the generating scheme. It has been observed that
after a large number of iterations the generated samples converge in distribution to a
random sample from the true posterior distribution under Ergodicity conditions [see,
for example, Smith and Roberts (1993) and Robert and Casella (2004) for a detailed
discussion].

Let data (θ11, θ21), (θ12, θ22), . . . , (θ1n, θ2n) be a sample of size n from a bivariate
MABvM distribution. Hierarchical specification of MABvM for i = 1, 2, . . . , n, is
given by
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θ1i |θ2i ∼ AGvM(μ + ϕθ2i , κ1, κ2) ,

θ2i ∼ GvM(μ1, μ2, κ3, κ4).

Then the corresponding likelihood function is

L(ϑ |θ1, θ2) =
n∏

i=1

f AGvM (θ1i |θ2i ) fGvM (θ2i ),

where ϑ is a vector of parameters i.e. ϑ = (μ,μ1, μ2, κ1, κ2, κ3, κ4, ϕ). We assume
a conjugate prior for (μ1, μ2) and μ as follows

f (μ1, μ2) = {C(δ, κ3R01, κ4R02)}−r exp{κ3R01 cos(μ1 − μ01)

+κ4R02 cos(2μ2 − 2μ02)},

and

f (μ) =
{
C

(π

4
, κ1L01, κ2L02

)}−l
exp{κ1L01 cos(μ − μ0)

+κ2L02 sin(2μ − 2μ0)},

where 0 ≤ μ,μ1 < 2π , 0 ≤ μ2 < π , r and l are integers which show the number of
realizations from the prior distributions, C(δ, κ3R01, κ4R02) and C

(
π
4 , κ1L01, κ2L02

)

are the normalizing constant of the GvM and AGvM distributions, respectively,
and (μ0, μ01, μ02, R01, R02, L01, L02) are the fixed hyper-parameters. All the other
parameters are assumed to be apriori independent. We consider U (−1, 1) for prior
distributions of κ2 and ϕ , andGa

(
α j , β j

)
for κ j , j = 1, 3, 4 . Then the joint posterior

distribution is given by

π(ϑ |θ1, θ2) ∝ L(ϑ |θ1, θ2) f (μ1, μ2|μ01, μ02, R01, R02)

f (μ|μ0, L01, L02) f (κ1|α1, β1)

× f (κ3|α3, β3) f (κ4|α4, β4)Iϕ[−1, 1]Iκ2 [−1, 1].

where I denotes an indicator function. The MCMC methods, including Gibbs sam-
pling, are based upon the full conditional posterior distributions. Joint full conditional
posterior for (μ1, μ2) is given by

π(μ1, μ2|·) = {C(δ, κ3, κ4)}−m exp
{
κ3Rn1 cos

(
μ1 − μn1

)

+κ4Rn2 cos 2
(
μ2 − μn2

)}
, (7)

where m = r + n. Also μn1 , μn2 , Rn1 and Rn2 are satisfied in the following equations
Rn1 cos

(
μn1

) = R01 cos(μ01) + ∑
i cos(θ2i ), Rn2 cos

(
2μn2

) = R02 cos(2μ02) +∑
i cos(2θ2i ), Rn1 sin

(
μn1

) = R01 sin(μ01) + ∑
i sin(θ2i ) and Rn2 sin

(
2μn2

) =
R02 sin(2μ02) + ∑

i sin(2θ2i ). Posterior inferences for μ1 and μ2 are obtained using
the following marginal full conditionals derived from (7)
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π(μ1|·) ∝ exp
{
κ3Rn1 cos

(
μ1 − μn1

)}
, (8)

π(μ2|·) ∝ exp
{
κ4Rn2 cos 2

(
μ2 − μn2

)}
. (9)

Full conditionals given in (8) and (9) are kernels of vM
(
μn1 , κ3Rn1

)
and

vM
(
2μn2 , κ4Rn2

)
respectively. Several straightforward methods to sample data from

the von Mises distribution are available (Best and Fisher 1979). Thus, the Gibbs sam-
pler algorithm can be easily applied to (8) and (9) to simulate random draws from the
corresponding posterior. The full conditional distribution for μ is obtained as follows

π(μ|·) =
{
C

(π

4
, κ3, κ4

)}−M
exp

{
κ1Ln1 cos(μ1 − μn) + κ2Ln2 sin 2(μ2 − μn)

}
,

where M = l + n. Also μn , Ln1 and Ln2 are satisfied in the following equations
Ln1 cos(μn) = L10 cos(μ0) + ∑

i cos(θ1i − ϕθ2i ), Ln2 cos(2μn) = L20 cos(2μ0) −∑
i cos(2θ1i − 2ϕθ2i ), Ln1 sin

(
μn1

) = L10 sin(μ0) + ∑
i sin(θ1i − ϕθ2i ) and

Ln2 sin(2μn) = L20 sin(2μ0) − ∑
i sin(2θ1i − 2ϕθ2i ). The other full conditional

distributions are as follows

π(κ1|·) ∝
{
C

(π

4
, κ1, κ2

)}−n
κ

α1−1
1 exp

{

κ1

(
n∑

i=1

cos(θ1i − μ − ϕθ2i ) − β1

)}

,

π(κ2|·) ∝
{
C

(π

4
, κ1, κ2

)}−n
exp

{

κ2

n∑

i=1

sin 2(θ1i − μ − ϕθ2i )

}

Iκ2 [−1, 1],

π(κ3|·) ∝ {C(δ, κ3, κ4)}−m κ
α3−1
3 exp

{

κ3

(
n∑

i=1

cos(θ2i − μ2) − β3

)}

,

π(κ4|·) ∝ {C(δ, κ3, κ4)}−m κ
α4−1
4 exp

{

κ4

(
n∑

i=1

cos 2(θ2i − μ2) − β4

)}

,

π(ϕ|·) ∝ exp

{

κ1

n∑

i=1

cos(θ1i − ϕθ2i ) + κ2

n∑

i=1

sin 2(θ1i − ϕθ2i )

}

Iϕ[−1, 1],

whereC(.) are normalizing constants of a GvMdistribution. These are not analytically
tractable. Thus Bayesian inference will be performed using MCMC methods such as
Metropolis-within-Gibbs algorithm (e.g. Geweke and Tanizaki 2001). Convergence is
monitored via MCMC chain histories, Gelman-Rubin diagnostic, autocorrelation and
density plots.

4 A simulation study

In this section we conduct a simulation experiment to assess the performance of the
Bayesian estimation for MABvM distribution. The experiment is controlled for the
sample size and the strength of the association between the two circular random vari-
ables. The data are generated from a MABvM distribution. We chose different values
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Table 1 Posterior mean and SD of the parameters, ϕ = −0.8

n = 30 n = 200 n = 500

Mean SD Mean SD Mean SD

μ1(π) 181.1 7.646 179.4 2.947 179.4 1.674

μ(0) 0.093 0.164 0.059 0.075 0.059 0.065

κ1(0.5) 0.476 0.183 0.495 0.081 0.500 0.055

κ2(0.8) 0.375 0.293 0.907 0.073 0.797 0.076

κ3(3) 3.021 0.583 2.990 0.325 2.990 0.256

κ4(1) 1.007 0.227 0.997 0.114 0.997 0.104

ϕ(0.8) −0.788 0.362 −0.796 0.015 −0.796 0.015

Table 2 Posterior mean and SD
of the parameters, ϕ = 0

n = 30 n = 200 n = 500

Mean SD Mean SD Mean SD

μ1(π) 176.6 8.053 176.6 2.985 180.2 2.958

μ(0) 0.724 0.599 0.163 0.071 0.083 0.071

κ1(0.5) 0.480 0.128 0.487 0.077 0.503 0.071

κ2(0.8) 0.795 0.135 0.799 0.125 0.799 0.106

κ3(3) 2.913 0.699 2.922 0.286 3.005 0.248

κ4(1) 0.765 0.372 0.881 0.162 1.003 0.135

ϕ(0) −0.028 0.058 0.014 0.018 −0.009 0.013

for ϕ, representing different degrees of associations, namely ϕ = −0.8, 0, 0.8. When
ϕ = 0 the variables�1 and�2 are independent. The parameters are fixed at certain val-
ues seen in Tables 1, 2 and 3. To reduce the number of parameters we set μ2 = 0.5μ1.
Also, we consider different sample sizes, namely n = 30,200,500. Using the Open-
BUGs software, we run 11,000 samples after removing 5000 as burn-in period. There
is no evidence of lack of convergence based on examinations of histories, Gelman-
Rubin diagnostic, kernel density, and autocorrelation plots. For example, posterior
plots of ϕ for n = 30 and true value ϕ = 0 are given in the Appendix.

Results of the experiment are given in Tables 1, 2 and 3. Labels Mean and SD
are posterior means and standard deviations respectively. True values are included in
the parentheses. We observe that with n = 30, the bias and SD of each estimator
is moderate and, decrease as n increases. In small samples, when the two circular
variables are negatively associated, κ2 estimation has considerable bias. Also by using
various values of hyperparameters we obtained similar results implying that posterior
estimates are not sensitive to the prior in this Bayesian analysis.
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Table 3 Posterior mean and SD
of the parameters, ϕ = 0.8

n = 30 n = 200 n = 500

Mean SD Mean SD Mean SD

μ1(π) 182.3 5.695 179.4 0.975 179.4 0.974

μ(0) 0.504 0.482 0.059 0.076 0.059 0.075

κ1(0.5) 0.575 0.085 0.502 0.081 0.500 0.051

κ2(0.8) 0.874 0.095 0.797 0.091 0.799 0.063

κ3(3) 2.854 0.458 2.99 0.315 2.99 0.201

κ4(1) 0.981 0.157 0.997 0.131 0.998 0.104

ϕ(0.8) 0.798 0.049 0.787 0.013 0.779 0.007

5 Numerical examples

This section provides three real data applications to assess the performance of the
suggested Bayesian algorithm for MABvM and the performance of the proposed
model in relation to the existent models. The datasets have previously been analyzed in
several other circular papers for various different purposes. First two of the competitive
models considered here are the Sine and Cosine models by Mardia (1975a) that are
produced from the full bivariate vM pdf that is proportional to

exp[κ1 cos(θ1 − μ1) + κ2 cos(θ2 − μ2) + α cos(θ1 − μ1) cos(θ2 − μ2)

+ β sin(θ1 − μ1) sin(θ2 − μ2)], (10)

where 0 ≤ θ1, θ2 < 2π , 0 ≤ μ1, μ2 < 2π , κ1, κ2 ≥ 0, and α, β ∈ R. This
pdf boils down to the Sine and Cosine models for (α, β) = (0, λ) and (α, β) =
(κ3,−κ3) respectively. In addition, we consider mixtures of Cosine and Sine models
as competitive models here. Mixtures of Cosine and Sine models are discussed more
broadly in Mardia et al. (2007). The other competitive bivariate circular models are
presented by Shieh and Johnson (2005) andKato (2009). The pdf of Shieh and Johnson
model is proportional to

exp[κ1 cos(θ1 − μ1) + κ2 cos(θ2 − μ2) + κ3 cos[2π{F1(θ1) − F2(θ2)} − μ3]],
(11)

and the pdf of Kato model is proportional to

exp[κ1 cos(θ1 − μ1) + κ2 cos(θ2 − μ2)]
×

[
1 + |ψ |2 − 2|ψ | cos [2π{F1(θ1) − F2(θ2)} − arg(ψ)

]]−1
,

(12)

where 0 ≤ θ1, θ2 < 2π , μ j ∈ [0, 2π), κ j ≥ 0, for j = 1, 2, 3, and Fκ(·) are the
distribution functions of vM(μk, κk), k = 1, 2. Details about ψ are given in Kato
(2009). These models have the vM marginal distributions. We also fit the exchanged
MABvM (EMABvM) as a MABvM model where the angles are denoted by �2 and
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�1, respectively. We employ Deviance Information Criterion (DIC) to compare the
models with each other.

We also wish to evaluate if the considered distribution well captures the multi-
modality, if present, in the dataset. Let Ck , k = 2, 4 be a modality condition, e.g.
C2 = (̃κ1 < 2|̃κ2|or κ̃3 < 4|̃κ4|) for bimodality and C4 = (̃κ1 < 2|̃κ2|and κ̃3 <

4|̃κ4|) for four-modes. We used the posterior probability Pk = P(Ck |θ1, θ2) to make
inference about the modality. Small Pk indicates unimodality.

MCMC technique is implemented using OpenBugs software version 3.2.3. In the
Bayesian analysis, the first 5000 iterations are used as burn-in. The next 10,000 itera-
tions are used for posterior inference. Convergence was monitored via MCMC chain
histories, autocorrelation and density plots.

5.1 Protein data

Protein structures are closely related with molecular ecology. One of the important
characteristics of these structures is protein conformational angles that is a natural
pairing of angles denoted by (θ1, θ2) with each angle in [−π, π ). Protein angles data
can be accessed in the Protein Structure Databank (PDB) (Berman et al. 2000) that
consists of large number of angle pairs. Different samples of the protein conforma-
tional angles have been employed previously byMardia et al. (2007), fittingmixture of
bivariate von Mises distributions. We use a subsample consisting of 255 paired obser-
vations to investigate the performances of MABvM and the other models considered
herein.

Scatter plots and contours of fitted bivariate distributions are given in Fig. 4. In each
panel, scatter plot of the angles, the contour of the fitted models, and the DICs are
given for visual and numerical assessment of the fit respectively. Accordingly, circular
scatterplots of θ1 and θ2 display multimodality represented by different clusters seen
in the figures. The similar plot in Mardia et al. (2007) confirms this general property
about the protein conformational angles as well. The fitted density of model MABvM
seems to show a satisfactory fit. Also P2 = 1 demonstrates thatMABvM is appropriate
to analyze this dataset.

Based on the DIC values, the MABvMmodel seems to be the most efficient among
all in terms of balancing the goodness of the fit with model complexity. Between
the competitive models, mixture of bivariate Cosine model is performing slightly
better than EMABvM. Also mixture models perform better than the Sine and Cosine
models. The difference between the models, MABvM and bivariate mixture models
in particular, for this data are further investigated in Fig. 8 given in the Appendix.
The parameter estimates of MABvM are μ̃ = 0.001 (0.006), μ̃1 = 0.026 (0.045),
μ̃2 = 0.016 (0.015), κ̃1 = 0.225 (0.104), κ̃2 = 0.080 (0.0.067), κ̃3 = 0.244 (0.143),
κ̃4 = 1.445 (0.219) and ϕ̃ = − 0.589 (0.148), with posterior standard deviations
given in parenthesis. The test for independence is equivalent to testing ϕ = 0. Since
95% credible intervals of ϕ̃ is (− 0.819,− 0.149), circular dependency between �1
and �2 is significant.
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Fig. 4 The scatter plots, the contours, and DICs of the fitted models for protein data. a MABvM model,
DIC=6350.2, b EMABvMmodel, DIC=6359.1, c Shieh and Johnson model, DIC=6496, d Kato model,
DIC=6540, e bivariate Cosine model, DIC=6541, f bivariate Sine model, DIC=6543, g mixture of
bivariate Cosine model, DIC=6355, h mixture of bivariate Sine model, DIC=6407

5.2 Wind data

Wind direction is important as it impacts a wide variety of environmental elements,
wind power and wildfires to name only a few. Previously, various wind directions
have been analyzed for various different applications and used for different theoretical
statistical researches (e.g. see Shieh and Johnson 2005 and Kato 2009). The two
particular data sets considered here have previously been used to illustrate the models
developed in the seminal circular articles. In these examples each angles representing
wind directions belong to [0, 2π). Our aim here is to compare the performance of
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the proposed model with those other bivariate circular models applied on these well-
known data sets.

Example 1 In this example, we analyze a dataset consisting pairs of wind directions
measured at aweather station in Texas. The dataset is a sample of a larger dataset which
is taken from a website http://data.eol.ucar.edu/codiac/dss/id=85.034. The original
dataset contains hourly resolution surface meteorological data from the Texas Natural
ResourcesConservationCommissionAirQualityMonitoringNetwork. In this dataset,
we consider 30 pairs of wind directions recorded at 6 a.m. and 7 a.m. each day at a
weather station from June 1 to June 30, 2003. The same subset has previously been used
by Kato (2009) to illustrate their model. Figure 5 shows scatter plot of the real data,
the contour of the fitted models and the corresponding DICs. The scatterplot displays
unimodality and suggests that there is an association between the wind directions at 6
a.m. and 7 a.m.

MABvM model provides the smallest DIC among all the competitive models. The
estimated parameters of MABvM model are given by μ̃ = 0.056 (0.021), μ̃1 =
2.411 (0.219), μ̃2 = 1.110 (0.177), κ̃1 = 2.300 (0.609), κ̃2 = 0.372 (0.435), κ̃3 =
1.432 (0.361), κ̃4 = 0.178 (0.094) and ϕ̃ = 0.886 (0.068). Also P2 = 0 and P4 = 0
show that MABvMmodel is unimodal. Parameter ϕ controls the dependency between
the two circular variables and ϕ̃ with the 95% credible interval (0.777, 0.927) confirms
that the wind directions at 6 a.m. and 7 a.m. are associated. This result is in line with
the result of Kato (2009) about the association of these two variables.

Example 2 We illustrate the utility of model (3) also by employing it for the analysis
of a set of 21 paired observations of �1 and �2, wind directions recorded for 21
consecutive days at 6 a.m. and noon respectively at a Milwaukee weather station. The
same set has previously been analyzed by Johnson andWehrly (1977) in their seminal
article as well as more recently by Shieh and Johnson (2005). Figure 6 gives the scatter
plots, the contours, and DICs of the fitted models. The dependency structure between
the two variables is not as clear as in the previous example. Based on the plots given
in the figure, it appears that the MABvM, EMABvM and mixture of bivariate cosine
distribution with two components may be particularly appropriate for modelling these
directions.

DIC values suggest that EMABvM is the best fitting model while the model
MABvM and the mixture of cosine models are also competitive. The DICs of
MABvM and the mixture of cosine model are quite close. One should note that the
number of parameters MABvM is less than that in the mixture of cosine model.
In EMABvM model, the estimates are μ̃ = 0.110 (0.009), μ̃1 = 0.382 (0.545),
μ̃2 = 0.203 (0.199), κ̃1 = 0.338 (0.148), κ̃2 = 0.632 (0.256), κ̃3 = 0.311 (0.167),
κ̃4 = 0.233 (0.128) and ϕ̃ = 0.119 (0.053). In this case, P4 = 1 thus the fitted
EMABvM is a multimodal model. Also the test for independence is equivalent to test-
ing ϕ = 0. Since 95% credible interval of ϕ̃ is (0.017, 0.229), the circular dependency
between the directions is significant. This is in line with the likelihood ratio test results
in Shieh and Johnson (2005).
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Fig. 5 The scatter plots, the contours, and DICs of the fitted models for the 30 samples of wind data
(Example 1). a MABvM model, DIC=707.2, b EMABvM model, DIC=747.7, c Shieh and Johnson
model, DIC=717.2, d Kato model, DIC=722.2, e bivariate Cosine model, DIC=716.9, f bivariate Sine
model, DIC=736.2, g mixture of bivariate Cosine model, DIC=714.2, hmixture of bivariate Sine model,
DIC=720

6 Concluding remarks

In the present paper, the asymmetry and multimodality of bivariate circular random
variables are addressed by utilizing a novel distribution that is denoted by MABvM
distribution. The proposed distribution that is based on both the GvM and AGvM
distributions achieves a more flexible distributions for the analysis of bivariate circular
data. It is notably easy to implement due to its hierarchical form based on GvM and
AGvM distributions. We addressed several important features of this distribution such
as obtaining the normalizing constant as a function of modified Bessel function and
periodicity.
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Fig. 6 The scatter plots, the contours, and DICs of the fitted models for the 21 samples of wind data
(Example 2). a MABvM model, DIC=534.3, b EMABvM model, DIC=532.1, c Shieh and Johnson
model, DIC=537.7, d Kato model, DIC=542, e bivariate Cosine model, DIC=538.0, f bivariate Sine
model, DIC=540.0, g mixture of bivariate Cosine model, DIC=534.6, hmixture of bivariate Sine model,
DIC=538.8

The proposed MABvM is applied to a small simulation study and also to three
datasets. We used Bayesian estimation and the Gibbs sampling algorithms for the
estimation. Other estimation techniques, e.g. frequentist, can also be applied in this
framework. Based on the DIC values, the MABvMmodel or the exchanged version of
it (EMABvM) seems to be most efficient among all the competing models considered
herein, in terms of balancing the goodness of the fit with model complexity. For the
future work we suggest applying the MABvM regression model to investigate the
effect of covariates on the location parameters.
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Appendix

Proof of Proposition 2.2 The proof is easily obtained since

C(δ, κ1, κ2, κ3, κ4) = C
(π

4
, κ1, κ2

)
C(δ, κ3, κ4)

where C
(

π
4 , κ1, κ2

)
and C(δ, κ3, κ4) are normalizing constants of AGvM and GvM,

respectively. Gatto and Jammalamadaka (2007) maintained

C(δ, κ3, κ4) = I0(κ3)I0(κ4) +
∞∑

l=1

I2l(κ3)Il(κ4) cos(2lδ).

Also C
(

π
4 , κ1, κ2

)
can be obtained by choosing δ = π

4 in Eq. (4).

Proof of Proposition 2.4 We can derive the conditions for number of modes of the
MABvM density when μ = μ1 = μ2 = 0 and ϕ �= 0, without loss of generality. To
locate the critical values, we take partial derivatives of log( f (θ1, θ2)) in Eq. (3) w.r.t

Table 4 Critical points of MABvM when θ2 = 0

θ1 κ2 > 0 κ2 < 0 Conditions

arctan
(
2κ2
κ1

(
1
2 R1 − 1

)
,
√
R1

)
Mode Saddle point –

arctan
(
2κ2
κ1

(
1
2 R1 − 1

)
,−√

R1
)

Saddle point Mode –

arctan
(
2κ2
κ1

(
1
2 R2 − 1

)
,
√
R2

)
Saddle point Mode κ1 < 2|κ2|

arctan
(
2κ2
κ1

(
1
2 R2 − 1

)
, −√

R2
)

Mode Saddle point κ1 < 2|κ2|

Table 5 Critical points of MABvM when θ2 = π

θ1 κ2 > 0 κ2 < 0 Conditions

arctan
(
− 2κ2

κ1

(
1
2 R1 − 1

)
,
√
R1

)
Saddle point Mode κ3 < 4κ4

arctan
(
− 2κ2

κ1

(
1
2 R1 − 1

)
, −√

R1
)

Mode Saddle point κ3 < 4κ4

arctan
(
− 2κ2

κ1

(
1
2 R2 − 1

)
,
√
R2

)
Mode Saddle point κ1 < 2|κ2|, κ3 < 4κ4

arctan
(
− 2κ2

κ1

(
1
2 R2 − 1

)
, −√

R2
)

Saddle point Mode κ1 < 2|κ2|, κ3 < 4κ4
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Table 6 Critical points of MABvM when θ2 =arctan(R3, R4) with condition κ1 < 2|κ2| and κ3 < 4κ4

θ1 κ2 > 0 κ2 < 0

arctan
(
2κ2
κ1

(
1
2 R1 − 1

)
,
√
R1

)
+arctan(R3, R4) Saddle point Anti-mode

arctan
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2κ2
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(
1
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)
,−√

R1
)

+arctan(R3, R4) Anti-mode Saddle point
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(
1
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)
,
√
R2

)
+arctan(R3, R4) Anti-mode Saddle point

arctan
(
2κ2
κ1

(
1
2 R2 − 1

)
, −√

R2
)

+arctan(R3, R4) Saddle point Anti-mode

Table 7 Critical points of MABvMwhen θ2 =arctan(−R3, R4) with condition κ1 < 2|κ2| and κ3 < 4κ4

θ1 κ2 > 0 κ2 < 0

arctan
(
2κ2
κ1

(
1
2 R1 − 1

)
,
√
R1

)
+arctan(−R3, R4) Anti-mode Saddle point

arctan
(
2κ2
κ1

(
1
2 R1 − 1

)
,−√

R1
)

+arctan(−R3, R4) Saddle point Anti-mode

arctan
(
2κ2
κ1

(
1
2 R2 − 1

)
,
√
R2

)
+arctan(−R3, R4) Saddle point Anti-mode

arctan
(
2κ2
κ1

(
1
2 R2 − 1

)
, −√

R2
)

+arctan(−R3, R4) Anti-mode Saddle point

Fig. 7 The posterior plots of ϕ in simulation study with real value ϕ = 0 when n = 30. a History plot, b
Gelman–Rubin diagnostic, c Kernel density plot, d autoregressive plot
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θ1 and θ2. Let g = log( f (θ1, θ2)) = logC +κ1 cos(θ1 −ϕθ2)+κ2 sin(2θ1 −2ϕθ2)+
κ3 cos(θ2) + κ4 cos(2θ2). Then

Gθ1 = ∂g

∂θ1
= κ1 sin(ϕθ2 − θ1) + 2κ2 cos(2ϕθ2 − 2θ1)

and

Gθ2 = ∂g

∂θ2
= −Gθ1 + κ3 sin(−θ2) + 2κ4 sin(−2θ2)

There are sixteen critical points for Gθ1 = Gθ2 = 0. Let Dθ1,θ2 = Gθ1,θ1Gθ2,θ2 −
G2

θ1,θ2
,

(i) if Dθ1,θ2 > 0 and Gθ1,θ1 < 0 then (θ1, θ2) is a mode.
(ii) if Dθ1,θ2 > 0 and Gθ1,θ1 > 0 then (θ1, θ2) is an anti-mode.
(iii) if Dθ1,θ2 < 0 then (θ1, θ2) is a saddle point.

We can find the number of modes after simplification of underlying algebraic
equations. The critical points are given in Tables 4, 5, 6 and 7 where R1 =
(4κ2)−2

(
−κ2

1 + 16κ2
2 +

√
κ4
1 + 32κ2

1κ2
2

)
, R2 = (4κ2)−2

(−2κ2
1 + 32κ2

2−

2
√

κ4
1 + 32κ2

1κ2
2

)
, R3 =

√
−κ23+16κ24

4κ4
, and R4 = − κ3

4κ4
.

In these tables arctan(x, y) gives the arc tangent of y
x . Table 4 illustrates that there is

no restrictions on unimodality when θ1 = arctan
(
2κ2
κ1

( 1
2 R1 − 1

)
,
√
R1

)
and θ2 = 0.

Checking all of the critical points shows that if κ1 < 2|κ2| or κ3 < 4κ4 then MABvM
has two modes. Also if κ1 < 2|κ2| and κ3 < 4κ4 then MABvM has four modes.

Posterior plots in simulation studywhen n = 30 and ϕ = 0Figure 7 shows the history,
Gelman–Rubin diagnostic, kernel density, and autocorrelation plots from the simula-
tion study.We define two sequences from different starting points. TheGelman–Rubin
diagnostic shows that the behavior of the sequence of chains is the same. Therefore,
the variance within the chains is the same as the variance across the chains. Also, the
autocorrelation plot reveals there is low correlation between successive samples and
the history plot moves up and down around the mode of the distribution. Thus the
samples will reach a stationary distribution.

3-D plots of protein data and the fitted models The difference between the proposed
models and the alternativemodels is an advantage of our study, since we have defined a
differentmodel to analysis bivariate circular data.An additional figure and comment on
the difference are now provided as follows. Accordingly, the MABvM model seems
to provide a better fit for the ruggedness of the histogram (i.e. the frequencies that
should not be ignored). The 3-D histogram of protein data and the kernel density plots
of the competitive models are given in Fig. 8.
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Fig. 8 The 3-D histogram of protein data and kernel density plots of the fitted models. a Histogram plot, b
MABvMmodel, c EMABvMmodel, d Shieh and Johnson model, e Kato model, f bivariate Cosine model,
g bivariate Sine model, h mixture of bivariate Cosine model, i mixture of bivariate Sine model
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