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A joint Bayesian approach for the analysis
of response measured at a primary
endpoint and longitudinal measurements
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Abstract

Joint mixed modeling is an attractive approach for the analysis of a scalar response measured at a primary endpoint and

longitudinal measurements on a covariate. In the standard Bayesian analysis of these models, measurement error

variance and the variance/covariance of random effects are a priori modeled independently. The key point is that

these variances cannot be assumed independent given the total variation in a response. This article presents a joint

Bayesian analysis in which these variance terms are a priori modeled jointly. Simulations illustrate that analysis with

multivariate variance prior in general lead to reduced bias (smaller relative bias) and improved efficiency (smaller

interquartile range) in the posterior inference compared with the analysis with independent variance priors.
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1 Introduction

In many researches, especially in health studies, interest lies in associating the response measured at the end of a
period with the features of a longitudinal process throughout the period. Wang et al.1 developed a joint modeling
approach for the analysis of such data in which two models, one for the scalar response and the other one is for the
longitudinal covariate, are joined together through a set of common latent factors. A generalized random effects
model is used to capture the trend of longitudinal covariate measurements over time. Response model is a
generalized linear model with fixed covariates and the subject-specific coefficients from the longitudinal model.
Response model associates the cross-sectional response measured at a primary endpoint with the features of the
longitudinal covariate process such as its slope and intercept. Efficient sufficiency and conditional score estimation
for the joint model are developed by Li et al.2 and Li et al.3 for single and multiple longitudinal covariates,
respectively, in which no assumption is required for the random effects. Li et al.4 proposed a semiparametric
extension to these models to be used when there is plausible distributional assumption about random effects. A
standard Bayesian analysis of the joint model is given by Horrocks and van den Heuvel.5 In this article, we focus
on the Bayesian analysis of the model, variance priors in particular. In such models where total variation in a
response is a sum of different variance components, we propose that it is natural to view this total variation as
composite and its constituents, namely measurement error variances and random effects variances/covariances not
independent and thus should be a priori modeled jointly. Our proposal goes beyond the current model of interest
to a wide range of models and study designs in which different variance components are present.

Joint a priori modeling of variance parameters in a hierarchical model was first undertaken in the study of
Demirhan and Kalaylioglu.6 They considered a normal linear growth model with uncorrelated random
coefficients and developed a strategy in which error variance and the variances of random effects were a
priori modeled jointly. The rationale for considering a joint prior model for the variance parameters in a
hierarchical model is the simple fact that the total variation in a response is composite and so there is a
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certain intrinsic dependency between its constituents. In that approach, random effects variances (log
transformed) and the error variance are stacked up into a vector and a multivariate prior distribution is
assigned to account for the intrinsic dependency among them. For the multivariate prior distribution, in
addition to some mainstream multivariate distributions such as multivariate normal and multivariate skew
normal, they considered a fresh one namely generalized multivariate log gamma (G-MVLG) by Demirhan and
Hamurkaroglu.7 Simulation study therein, in which Bayesian analysis with joint prior model for the variance
parameters and that with independent priors on error variance and random effects variances are compared,
revealed that joint prior for variance components improved efficiency (smaller posterior variance) and
diminished bias in Bayesian estimators of random coefficients and their population averages were compared
to the the standard Bayesian analysis where independent variance priors are used. Simulation results also
showed that, among the multivariate distributions considered therein, G-MVLG provided the smallest mean-
squared errors in all the various different scenarios considered. Their study was limited to models with
uncorrelated random effects and statistical and computational efficiency of the method for models with
correlated random effects remained as a question.

Given the benefits of the approach in hierarchical models with uncorrelated random effects, the idea therein
is now extended to the more common way of modeling in which random effects are correlated. The objectives
of this article are to (i) develop a joint variance prior approach for models with correlated random effects,
particularly in the context of joint model, which is used for the analysis of response measured at an endpoint
and longitudinal covariates; (ii) investigate its performance under various possible scenarios; and (iii) enlarge
the suitable set of prior distribution choices for random effects covariance matrices (this provides the data
analyst with flexibility in foregoing prior choice in the analysis of multilevel models).

The rest of the article on that account is organized as follows: In Section 2, we briefly mention the well-known
datasets containing scalar response and longitudinal covariate measurements and present the data we analyzed in
Section 5. Section 3 elaborates how to use G-MVLG as multivariate variance/covariance prior in the setting of
interest. Section 4 presents a simulation study comparing the proposed variance prior and the traditional one in joint
model setting in terms of relative bias, posterior interquartile range, and standard error estimates. Section 5 uses the
proposed approach to determine whether postprandial glucose through the gestation can be used as a prognostic
biomarker for obstetric complications in diabetic women. The article ends with a discussion presented in Section 6.

2 Motivating examples

There are many studies in medical research in which the aim lies in determining the association between the
outcome observed at a particular endpoint and the trajectory of a covariate measurable over time prior to the
endpoint, the most well-known examples being the datasets produced in SWAN (Study of Women’s Health Across
the Nation, see Sowers et al.8) and CARET (Carotene and Retinol Efficacy Trial, primary results of which are
given in Omenn et al.,9 Omenn et al.,10 and Goodman et al.11). Our particular dataset at hand has come from a
study conducted in Zekai Tahir Burak Women Health, Care and Research Hospital in Ankara. The aim of the
study was to investigate the association between glycated hemoglobin (HbA1c) levels of pregnant women with
gestational diabetes mellitus (GDM) recorded over the gestation period and the probability of obstetrics
complication. The (log) serum HbA1c of the patients were recorded at the patients antenatal visits. Minimum,
median, and maximum number of recordings were two, five, and eight, respectively. The dataset included, for each
(i) of 259 women with GDM, (log) serum HbA1c measured at each antenatal visit (i.e. at tij;HbA1cij;continuous),
maternal characteristics (maternal age (Agei;continuous), body mass index of patient before 8 weeks of gestation
(BMIi;continuous), parity (Pi;continuous), GDM history (GDMHi;binary), GDM family history
(GDMFHi;binary), hemoglobin concentration> 13 g/dL (Hb13i;binary), macrosomia history (MSHi;binary)),
and the status of obstetric labor complication (OLCi;binary). For the binary variables, absence is the reference
level. The analyses were carried out for GDM patients on insulin and diet treatments separately. In this article, we
use the partial dataset consisting of patients on insulin only for illustrative purpose. Complete analyses including
different types of obstetrics complications will be published in an obstetric journal.

Figure 1 shows the HbA1c profile of the patients with (right) and without (left) an obstetrics complication. Bold
lines in the Figure 1 basically join the average of HbA1c levels of women at time tij’s. Visual comparison of the two
figures offer a preliminary intuition about the association between the HbA1c profile over the gestation and
occurrence of obstetrics complication. However, surely it is still difficult to set firmly whether the two figures
are statistically significantly (dis)similar. To shed light on whether obstetrics complication is associated with
HbA1c profile, controlled for all the other factors, the dataset is analyzed in Section 5 using the Bayesian
methods considered in this article.
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3 Joint model and a joint Bayesian analysis

3.1 A Bayesian view of the joint model

We consider the joint model framework of Li et al.2 for modeling generalized responses on longitudinally
measured continuous covariates. We restate the model here from a Bayesian viewpoint. Let Yi denote the
response obtained from subject i, i ¼ 1, . . . , n, at a primary endpoint, Wij be the jth observed longitudinal
continuous measurement for subject i taken prior to the primary endpoint of interest, Wi ¼ fWi1,Wi2, . . . ,Winig

be the set of these longitudinal measurements with ni being the number of measurements for subject i, and Zi be the
1� p vector of cross-sectional covariates of mixed type measured for subject i including 1 for the intercept. Also let
Xi denote the random coefficients (q� 1) characterizing the Wi profile over time. In addition, let b be the p� 1
vector of unknown regression coefficients associated with the cross-sectional covariates and � be the q� 1 vector
of unknown regression coefficients associated with Xi. Below, Ui ¼ fUi1,Ui2, . . . ,Uinig be the vector of uncorrelated
error terms specified under the conditional independency assumption for Wijs given Xi. Then, for i ¼ 1, . . . , n,

f ðYijZi,Xi,�, �Þ ¼ exp Yi�i�bð�iÞ
að�Þ þ cðYi,�Þ

� �
Wi ¼ DiXi þUi

ð1Þ

Xij�X,�X � FX

Uij�
2
U � FU

ð2Þ

� � F�
� � F�

ð3Þ

�X � F�X

�X � F�X

� � F�
�2U � F�2

U

ð4Þ

where �i ¼ ZT
i �þ XT

i �, Di is the ni � q design matrix for time variables, � is the precision parameter, FX is the
distribution assumed for Xis with mean lX and unstructured covariance matrix �X, FU is a suitable distribution
with mean 0 and covariance matrix �2UIni , e.g., Nnið0, �

2
UIniÞ, where Nni is a multivariate normal distribution of

dimension ni and Ini is an identity matrix of ni � ni. Here, Xi’s are latent variables shared by Yi and Wij models. In
the first one, they act as (latent) covariates whereas they are the random coefficients in the second one. As indicated
above, the hierarchical structure can be thought of in four distinct levels. First level of the hierarchy, labeled with

Figure 1. Serum HbA1c versus gestational week for pregnant women with GDM.
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(1), concerns with models for the observables (i.e. Yi and Wi for i ¼ 1, . . . ,N) given the unobservables. Second
level, labeled with (2), imposes distributional assumptions for the unobservables namely the random effects and the
random errors. Level (3) serves either to incorporate any prior knowledge about the corresponding associations (in
which case an informative prior emerges) or some initial distributional assumptions about them to start with in the
absence of prior knowledge (in which case a noninformative prior emerges). Last level of the hierarchy, level
labeled with (4), is where the prior distributions for the parameters of the distributions of the random terms are set
up. Focus of our article is the variance and variance–covariance matrix priors in this level.

When the primary-endpoint-outcome, Yi, is a continuous measurement, which is modeled by, e.g.,
Yi ¼ ZT

i �þ XT
i � þ 2i, where 2is are error terms that are independently and identically distributed with mean 0

and variance �22, total marginal variation in Yi is given by VarðYiÞ ¼ �
T�X� þ �

2
2. That is, the constituents of the

total variation in Yi are variance and covariance terms in �X as well as �22. Similarly, in the joint model, total
marginal covariance in Wi is given by VarðWiÞ ¼ Di�XD

T
i þ �

2
UIni . That is, the constituents of the total covariance

in Wi are variance and covariance terms in �X as well as �2U. Impelled by the compositional feature of the total
variations in the response variables as such, we propose joint a priori modeling for the error variances and the
random effects variance–covariance matrix components.

3.2 A joint Bayesian analysis: Joint prior for error variance and random effects
variance–covariance matrix

Commonplace in the Bayesian analysis of random effects models is to consider the (inverse-gamma, inverse-
Wishart) pair as priors for error variances and random effects covariance matrix, respectively. The now-known
pitfalls of the inverse-gamma prior should discourage the use of it as default variance prior for noninformative
Bayesian analysis (see the seminal work of Gelman12 and more recently Demirhan and Kalaylioglu6). Similarly,
inverse-Wishart prior, which implies that variance priors along the diagonal have inverse-gamma distributions,
may inherit the same drawbacks of inverse-gamma and thus should be used with care in practice. Moreover,
inverse-Wishart is restrictive in the sense that it lacks parameters modeling the prior dependencies between the
elements of a covariance matrix (Leonard and Hsu13). Most recently, Huang and Wand14 proposed a family of
priors for covariance matrices in which direct use of inverse-Wishart is avoided. Alternatively, a covariance or an
inverse covariance matrix is decomposed and prior distributions are assigned to the resulting decompositions
(e.g. see Chen and Dunson15 and Cai and Dunson16). This is still an active research area and Cholesky,
modified Cholesky, spectral decomposition, and variance-correlation decompositions have been studied to
formulate covariance matrix priors. Once the entries of the triangular and diagonal matrices resulted from
the decomposition are vectorized, univariate and multivariate prior distributions have been considered.
Modified Cholesky decomposition is especially useful in dynamic models when covariance matrix entries are
to be modeled conditional on covariates (see, e.g. Daniels and Pourahmadi17). Our interest lies in priors for
unstructured covariance matrices and we consider the basic Cholesky decomposition, in particular, as a
convenient choice. Variance–covariance matrix priors based on the basic Cholesky decomposition can be
found in Frühwirth-Schnatter and Tüchler,18 Tüchler,19 and Congdon.20 For an extensive account of
decomposition-based variance–covariance matrix prior developments, refer to the references listed in
Barnard et al.21 In addition, for a complete history of covariance matrix modeling as well as the
advantages of them in particular of Cholesky, refer to Pourahmadi.22 Our proposed joint prior modeling
approach for the error variances and the variance–covariance matrix components in the joint model in Section
3.1. requires Cholesky decomposition of the random effects variance–covariance matrix.

We utilize Choleskymethod to decompose the random effects variance–covariance matrix as �X ¼ CCT, whereC
is a lower triangular matrix, vectorize the diagonals and nonzero off-diagonals ofC and denote the resulting column
vectors by C1 and C2, respectively, and eventually consider a joint prior distribution for ðCT

1 ,C
T
2 , �

2
2, �

2
UÞ

T if the
outcome variable is continuous and for ðCT

1 ,C
T
2 , �

2
UÞ

T if the outcome variable is either dichotomous or
polychotomous. Ultimately, we consider a multivariate distribution for the vector of log-transformed error
variances, log-transformed C1, and untransformed C2, in particular, G-MVLG, due to its advantages as a robust
noninformative prior that are elucidated in Demirhan and Kalaylioglu.6 Positive definiteness of �X is ensured by
imposing positive priors on C1 whereas those for C2 are left unconstrained. Assignment of positive priors is
accomplished by considering unconstrained priors for log(C1). Finally, �X and �2U priors on level (4) above becomes,

ðlogðC1Þ,C2, log�, log�
2
UÞ

T
� Fð�,	,k, gÞ ð5Þ
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where Fð�,	,k,gÞ represents the G-MVLG distribution indexed by the positive parameter vector ð�, 	, k, gÞ. Once
the Gibbs algorithm produces Markov chains each of which is convergent to the corresponding marginal
posterior distribution for each parameter in ðlogðC1Þ,C2, log�

2
UÞ

T, Markov chains for the components of �X

are obtained by the deterministic back transformation,

�X,ll ¼
Pl
r¼1

c2lr

�X,kl ¼
Pl
r¼1

ckrclr,

ð6Þ

where �X,ll and �X,kl are the variances and the covariances, respectively, cll are the diagonals of C and also the
elements of C1, ckl are the nonzero off-diagonals of C and also the elements of C2 for
l ¼ 1, . . . , q, k ¼ ðlþ 1Þ, . . . , q. Immediate benefits of the approach are (1) use of inverse-gamma and inverse-
Wishart are avoided and (2) compositional feature of total variance is accounted for. For each bi, a slightly
flat normal prior is considered. Initial Gibbs runs with noninformative priors for � i’s resulted in long-lasting
autocorrelations, which may be associated with an identifiability issue. To avoid identifiability problem related
with � coefficients, weakly informative priors are considered. For the variance parameters, independent priors
(inverse-gamma or uniform, inverse-Wishart) and joint prior approach (based on G-MVLG) are considered as
described earlier for comparative purposes. For each lX, diffuse prior is used. For the fixed hyperparameters
of all these prior distributions, see Section 3. Joint posterior distribution of model parameters and the latent
variables for generalized Y is,

f ð�, �,�, �2U,�X,�X,XjY,W,Z,DÞ / Lð�, �,�, �2U,�X,�XjX,Y,W,Z,DÞ
�f�ð�Þf�ð�Þf�,�2

U
,�X
ð�, �2U,�XÞ

,

where f�ð�Þ, f�ð�Þ and f�,�2
U
,�X
ð�, �2U,�XÞ are priors and

Lð�, �,�, �2U,�X,�XjX,Y,W,Z,DÞ ¼ f ðYjX,W,Z,D,�, �,�Þ
�f ðWjX,D, �2UÞ f ðXj�X,�XÞ

is the complete data likelihood components of which are readily written out based on the model described in
Section 3. Gibbs sampling via OpenBUGS is used to obtain the marginal posterior distributions of the parameters.

4 Simulation study

In this simulation study, analysis with the proposed joint variance prior approach is examined and compared with
the standard approach in terms of bias in and efficiency of posterior estimators. Aim of the simulation study is to
investigate the following questions, in particular. Does joint variance approach improve posterior inference on
regression coefficients (b and �) and variance components relative to the standard approach? How do they
compare with respect to the sample size and the true association between the cross-sectional outcome and
profile of the longitudinal covariate? Simulation experiment is controlled for sample size (n) and the strength of
the aforementioned association (�1 and �2). Different scenarios encompassing moderate to large sample sizes
(n¼ 250 and n¼ 500) and positive to negative associations are studied. Our data producing mechanism
resembles a natural setting and is as follows. Random effects Xi ¼ ðXi1,Xi2Þ for each i ¼ 1, . . . , n are generated

from N2ð�X,�XÞ, where �X ¼ ð0:5, 0:5Þ
T and �X ¼

1 �0:2
�0:2 0:64

� �
. Given the random effects, each binary

response Yi is generated from a Bernoulli distribution with success probability pi, where
logitðpiÞ ¼ �þ �1Xi1 þ �2Xi2. For (�1, �2), three different scenarios are considered implying negative association
(�3,�2), positive association (3,2), and near-zero association (0.3,0.2) between the odds of Yi¼ 1 and the
longitudinal profile of Wi. Two prevalence scenarios are considered for PðY ¼ 1Þ illustrating a rare medical
problem (PðY ¼ 1Þ ¼ 0:1) and a rather common problem (PðY ¼ 1Þ ¼ 0:5). True b corresponding to resulting
six scenarios are given in Tables 1–6. Longitudinal covariates are generated from Wij ¼ Xi1 þ Xi2tij þUij for

i ¼ 1, . . . , n, j ¼ 1, . . . , ni, where tij is the time point at which Wij is measured and Uiid
ij � Nð0, �2UÞ

(iid¼ independently and identically distributed). The number of longitudinal measurements, nis, and
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measurement times, tijs are obtained as follows: Mimicking the GDM study, a study period of 36 weeks is
considered and ni¼ 5 time points are generated randomly from a discrete uniform distribution (1, 36) for all i
(balanced). Then to produce imbalanced longitudinal data, each tij is made arbitrarily missing with probability
0.05. Simulations are repeated 100 times.

Priors are � � Nð0, 100Þ, ð�1, �2Þ
T
� N2ðð0, 0Þ

T, 10I2Þ, and �X � N2ðð0, 0Þ
T, 10I2Þ. Each simulated dataset is

analyzed using both of the approaches on variance parameters. In the first approach, 1 ⁄�2U � Gað2:02, 1:49Þ and

��1X �WishartðR, 5:06Þ, where R¼
0:88 �0:3
�0:3 0:67

� �
. In the second approach,

ðlogðC1Þ,C2, log�
2
UÞ

T
� G�MVLGð�, 	, 
, �Þ, where � ¼ 0:3, 	 ¼ 1:42, 
 ¼ ð0:3, 0:3, 0:3, 0:4ÞT, and

� ¼ ð0:25, 0:35, 0:25, 0:1ÞT. These hyperparameter values are chosen so that the two approaches impose similar
degree of prior uncertainty on the variance parameters. For each approach, our OpenBUGS codes are run to

Table 1. Summary statistics for posterior medians.

n True parameter

Relative bias Interquartile range MC standard error

G-MVLG (IG,IW) G-MVLG (IG,IW) G-MVLG (IG,IW)

250 � ¼ �4:6 0.129 0.143 1.724 1.752 1.314 1.317

�1 ¼ 3 0.167 0.194 1.318 1.352 0.931 0.943

�2 ¼ 2 0.106 0.119 0.845 0.855 0.708 0.705

�2
U ¼ 0:5 0.005 0.011 0.035 0.036 0.027 0.027

Var(Xi0)¼ 1 0.017 �0.026 0.191 0.223 0.134 0.132

Var(Xi1)¼ 0.64 0.019 �0.001 0.079 0.077 0.055 0.054

Cov(Xi0, Xi1)¼�0.2 0.057 0.042 0.089 0.161 0.069 0.068

500 � ¼ �4:6 0.067 0.075 1.209 1.233 0.783 0.783

�1 ¼ 3 0.080 0.094 0.928 0.947 0.641 0.644

�2 ¼ 2 0.069 0.078 0.599 0.609 0.393 0.394

�2
U ¼ 0:5 0.005 0.007 0.026 0.026 0.017 0.017

Var(Xi0)¼ 1 0.0002 �0.021 0.134 0.153 0.101 0.100

Var(Xi1)¼ 0.64 0.024 0.014 0.056 0.055 0.042 0.041

Cov(Xi0, Xi1)¼�0.2 �0.019 �0.025 0.063 0.109 0.042 0.042

Note: True P (Y¼ 1WX)¼ 0.1.

Table 2. Summary statistics for posterior medians.

n True parameter

Relative bias Interquartile range MC standard error

G-MVLG (IG,IW) G-MVLG (IG,IW) G-MVLG (IG,IW)

250 � ¼ 0:3 0.123 0.251 0.546 0.561 0.356 0.362

�1 ¼ �3 0.116 0.142 1.302 1.336 0.842 0.849

�2 ¼ �2 0.080 0.096 0.839 0.854 0.580 0.580

�2
U ¼ 0:5 0.007 0.013 0.036 0.036 0.026 0.026

Var(Xi0)¼ 1 0.012 �0.030 0.190 0.226 0.130 0.127

Var(Xi1)¼ 0.64 0.018 �0.001 0.079 0.076 0.054 0.053

Cov(Xi0, Xi1)¼�0.2 0.054 0.039 0.089 0.162 0.068 0.067

500 � ¼ 0:3 0.074 0.137 0.387 0.395 0.272 0.276

�1 ¼ �3 0.091 0.105 0.969 0.987 0.703 0.715

�2 ¼ �2 0.049 0.058 0.613 0.621 0.431 0.436

�2
U ¼ 0:5 0.005 0.008 0.026 0.026 0.017 0.017

Var(Xi0)¼ 1 �0.001 �0.022 0.134 0.153 0.103 0.102

Var(Xi1)¼ 0.64 0.024 0.014 0.056 0.055 0.042 0.042

Cov(Xi0, Xi1)¼�0.2 �0.015 �0.022 0.063 0.109 0.043 0.042

Note: True P (Y¼ 1WX)¼ 0.1.
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obtain twoMarkov chains. First 5000 iterations of each chain are discarded and every 10th of next 25,000 iterations are
used for posterior calculations (thinning, chain size, and convergence were determined based on the autocorrelation
plots, Monte Carlo (MC) standard errors, and estimated potential scale reduction factors (Gelman and Rubin23)).

Posterior medians are used to estimate the parameters. We use posterior interquartile range as a measure of
efficiency. G-MVLG and (inverse-gamma, inverse-Wishart)-based approaches are compared based on relative bias
and posterior interquartile range. MC estimates of these quantities along with MC standard error estimates of
posterior medians are given in Tables 1–6. In the tables, (inverse-gamma, inverse-Wishart) is denoted by (IG,IW).
From the tables, we see that G-MVLG joint prior consistently leads to smaller relative bias and narrower
interquartile range in response model coefficient estimators, the parameters of the main inferential concern. G-
MVLG and (IG,IW) have comparable MC standard error estimates which makes the comparison of relative biases
and interquartile ranges meaningful.

Table 4. Summary statistics for posterior medians.

n True parameter

Relative bias Interquartile range MC standard error

G-MVLG (IG,IW) G-MVLG (IG,IW) G-MVLG (IG,IW)

250 � ¼ �2:5 0.148 0.169 1.085 1.109 0.688 0.685

�1 ¼ 3 0.186 0.213 1.332 1.370 0.839 0.839

�2 ¼ 2 0.116 0.131 0.827 0.843 0.501 0.497

�2
U ¼ 0:5 0.011 0.017 0.036 0.036 0.027 0.027

Var(Xi0)¼ 1 �0.033 �0.075 0.186 0.239 0.138 0.135

Var(Xi1)¼ 0.64 0.014 �0.005 0.079 0.077 0.052 0.051

Cov(Xi0, Xi1)¼�0.2 �0.028 �0.040 0.088 0.166 0.063 0.062

500 � ¼ �2:5 0.126 0.138 0.801 0.815 0.653 0.655

�1 ¼ 3 0.143 0.157 0.967 0.985 0.789 0.791

�2 ¼ 2 0.107 0.116 0.616 0.623 0.463 0.469

�2
U ¼ 0:5 0.005 0.008 0.025 0.026 0.020 0.020

Var(Xi0)¼ 1 �0.007 �0.028 0.134 0.156 0.104 0.103

Var(Xi1)¼ 0.64 0.009 �0.002 0.055 0.055 0.041 0.040

Cov(Xi0, Xi1)¼�0.2 0.011 0.003 0.062 0.112 0.040 0.040

Note: True P (Y¼ 1WX)¼ 0.5.

Table 3. Summary statistics for posterior medians.

n True parameter

Relative bias Interquartile range MC standard error

G-MVLG (IG,IW) G-MVLG (IG,IW) G-MVLG (IG,IW)

250 � ¼ �2:5 0.045 0.047 0.523 0.529 0.394 0.396

�1 ¼ 0:3 0.060 0.083 0.420 0.428 0.314 0.321

�2 ¼ 0:2 �0.121 �0.107 0.397 0.399 0.325 0.326

�2
U ¼ 0:5 0.006 0.013 0.037 0.037 0.027 0.027

Var(Xi0)¼ 1 0.009 �0.035 0.194 0.235 0.139 0.136

Var(Xi1)¼ 0.64 0.019 �0.000 0.079 0.077 0.055 0.053

Cov(Xi0, Xi1)¼�0.2 0.070 0.056 0.090 0.167 0.070 0.068

500 � ¼ �2:5 0.019 0.020 0.351 0.353 0.260 0.262

�1 ¼ 0:3 �0.036 �0.025 0.282 0.285 0.211 0.215

�2 ¼ 0:2 0.024 0.033 0.273 0.274 0.186 0.187

�2
U ¼ 0:5 0.000 0.003 0.025 0.026 0.020 0.020

Var(Xi0)¼ 1 �0.000 �0.022 0.136 0.155 0.097 0.096

Var(Xi1)¼ 0.64 0.003 �0.007 0.055 0.054 0.042 0.042

Cov(Xi0, Xi1)¼�0.2 �0.005 �0.012 0.063 0.112 0.047 0.046

Note: True P (Y¼ 1WX)¼ 0.1.
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5 Association between HbA1c and obstetric labor complication among women with
diabetes mellitus

In this section, GDM dataset described in Section 2 is revisited. We model the data using the joint model and
employ both standard and joint Bayesian approach for its analysis.

Number of longitudinal serum HbA1c measurements (ni) varying between only three and eight per subject,
unaligned, and not having a particular functional form over the weeks (as seen in Figure 1) motivate a simple
regression for the longitudinal model in (1) only with random intercept and slope terms. A generalized linear
regression is used for the probability of OLC, in which longitudinal log serum HbA1c are accounted for by

Table 5. Summary statistics for posterior medians.

n True parameter

Relative bias Interquartile range MC standard error

G-MVLG (IG,IW) G-MVLG (IG,IW) G-MVLG (IG,IW)

250 � ¼ 2:5 0.198 0.221 1.125 1.150 0.709 0.714

�1 ¼ �3 0.214 0.241 1.351 1.390 0.828 0.834

�2 ¼ �2 0.190 0.205 0.872 0.886 0.570 0.569

�2
U ¼ 0:5 0.008 0.013 0.035 0.036 0.029 0.029

Var(Xi0)¼ 1 0.006 �0.035 0.189 0.222 0.123 0.119

Var(Xi1)¼ 0.64 0.022 0.002 0.079 0.077 0.059 0.061

Cov(Xi0, Xi1)¼�0.2 �0.008 �0.020 0.088 0.158 0.058 0.060

500 � ¼ 2:5 0.075 0.088 0.757 0.772 0.508 0.511

�1 ¼ �3 0.099 0.114 0.918 0.940 0.634 0.634

�2 ¼ �2 0.069 0.079 0.585 0.595 0.414 0.418

�2
U ¼ 0:5 0.005 0.008 0.026 0.026 0.017 0.017

Var(Xi0)¼ 1 0.0001 �0.022 0.135 0.153 0.101 0.099

Var(Xi1)¼ 0.64 0.024 0.014 0.056 0.055 0.042 0.042

Cov(Xi0, Xi1)¼�0.2 �0.014 �0.021 0.063 0.109 0.042 0.042

Note: True P (Y¼ 1WX)¼ 0.5.

Table 6. Summary statistics for posterior medians.

n True parameter

Relative bias Interquartile range MC standard error

G-MVLG (IG,IW) G-MVLG (IG,IW) G-MVLG (IG,IW)

250 � ¼ �0:25 �0.059 �0.043 0.267 0.268 0.192 0.194

�1 ¼ 0:3 0.108 0.128 0.253 0.260 0.207 0.212

�2 ¼ 0:2 �0.074 �0.061 0.236 0.236 0.183 0.183

�2
U ¼ 0:5 �0.001 0.005 0.036 0.036 0.031 0.031

Var(Xi0)¼ 1 �0.015 �0.059 0.190 0.237 0.126 0.123

Var(Xi1)¼ 0.64 0.020 �0.0003 0.079 0.077 0.061 0.059

Cov(Xi0, Xi1)¼�0.2 �0.026 �0.039 0.089 0.165 0.063 0.061

500 � ¼ �0:25 �0.008 0.0001 0.183 0.184 0.125 0.126

�1 ¼ 0:3 �0.058 �0.048 0.171 0.172 0.124 0.126

�2 ¼ 0:2 0.051 0.056 0.162 0.163 0.114 0.115

�2
U ¼ 0:5 0.004 0.007 0.026 0.026 0.017 0.017

Var(Xi0)¼ 1 �0.002 �0.024 0.135 0.156 0.103 0.102

Var(Xi1)¼ 0.64 0.024 0.014 0.056 0.055 0.042 0.041

Cov(Xi0, Xi1)¼�0.2 �0.014 �0.020 0.063 0.110 0.042 0.042

Note: True P (Y¼ 1WX)¼ 0.5.
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including covariates that are the random coefficients from the longitudinal model. Hence, the mixed effects
response models considered are,

probitðPðOLCi ¼ 1jcovariatesiÞÞ ¼ �1 þ �2Agei þ �3BMIi þ �4Pi þ �5GDMHi

þ�6GDMFHi þ �7Hb13i þ �8MSHi þ �1Xi1 þ �2Xi2

logðHbA1cijÞ ¼ Xi1 þ Xi2
tij��t
St

� �
þUij

where �t and St are the mean and the standard deviation of all tij’s, i¼ 1,. . .,259, j¼ 1,. . .,ni. Here, �1 and �2 together
represent the degree of association between the probability of OLC and the mother’s log serum HbA1c profile over
the gestation period. In particular, �2 represents the association between the probability of OLC and the rate of
change in log serum HbA1c in time and that being equal to 0 indicates OLC status is not related with the slope of
mother’s log serum HbA1c across the gestation. �1, on the other hand, represents the association between the
probability of OLC and the mother’s mean log serum HbA1c. Of the two, attention centers about the inference on
�2 as it tells whether the way the mother’s log serum HbA1c changes across the gestational age can be used as a
biomarker for OLC.

Probit link is preferred for computational benefits following Albert and Chib.24 Since Xi1 and Xi2 are latent, one
has to consider a population distribution for them, so that Gibbs sampling can integrate them out. For the data in
which all the subjects exhibit a linear trend in a longitudinal plot, one can establish such a distribution by fitting
individual regressions for each subject, collecting all the individual intercept and slope estimators together (i.e.
estimators of Xi1’s and Xi2’s for i¼ 1,. . .,259) and fit a distribution to those. For the data in which longitudinal
profiles vary considerably across individuals, as in the dataset analyzed here, a reasonable population model is
assumed instead such as a bivariate normal (N2ð�X,�XÞ) or a bivariate t (t2ð�X,�X, 4Þ).

Priors are �1 � Nð0, 100Þ, �p � Nð0, 103Þ for p ¼ 2, . . . , 8, �q � Nð0, 10Þ for q¼ 1, 2, and
�X � N2ðð0, 0Þ

T, 100I2Þ. b1 is assigned a slightly more informative prior as our initial Gibbs runs indicated a
large autocorrelation on earlier lags, which may be due to an identifiability issue in the sample. For the usual
independent priors for the error variance and the random effects covariance matrix, 1 ⁄�2U � Gað0:01, 0:01Þ and
��1X �Wishartð0:001I2, 2Þ. For joint variance prior ðlogðC1Þ,C2, log�

2
UÞ

T
� G�MVLGð0:7, 1:42, 
, �Þ with


 ¼ ð0:3, 0:3, 0:3, 0:4ÞT, � ¼ ð0:25, 0:35, 0:25, 0:1ÞT. Both of these priors are slightly noninformative and
parameters are selected, so that they have similar uncertainty on the variance components. Convergence is
ensured and the pseudo-convergence is avoided by running one long chain (as advised by Brooks et al.25).
First, 75,000 iterations are burnt and every 50th of next 925,000 iterations resulting in 18,500 iterations in total
are hired for the posterior inference. A sample OpenBUGS code for G-MVLG is provided below.

Posterior means and the 95% quantile-based posterior intervals for the probit regression coefficients are given
in Table 7. First column lists the covariates. X1 and X2 are the mean HbA1c (intercept of the HbA1c process) and
change in HbA1c (slope of the HbA1c process), respectively. Accordingly, average HbA1c level during the
gestation period is positively associated with probability of OLC (neither of the related 95% posterior intervals
encompass zero), adjusted for the other factors. Also, we see that posterior inference obtained from Bayesian

Table 7. Posterior means and the 95% posterior intervals of the coefficients.

Covariates

Joint variance prior (G-MVLG) Independent variance priors (IG,IW)

XT
i � N2ð�X ,�XÞ XT

i � t2ð�X ,�X ,4Þ XT
i � N2ð�X ,�XÞ XT

i � t2ð�X ,�X ,4Þ

Intercept �7.81 (�13.50, �2.51) �7.69 (�13.13, �2.44) �9.93 (�17.28, �2.84) �9.84 (�17.83, �2.79)

Age 0.002 (�0.06, 0.06) 0.003 (�0.06, 0.06) �0.003 (�0.07, 0.06) 0.0007 (�0.07, 0.07)

BMI 0.003 (�0.06, 0.06) 0.004 (�0.06, 0.07) 0.006 (�0.07, 0.08) 0.006 (�0.07, 0.08)

Parity 0.23 (�0.02, 0.50) 0.23 (�0.02, 0.49) 0.26 (�0.02, 0.55) 0.26 (�0.03, 0.56)

GDMH 0.43 (�0.20, 1.05) 0.43 (�0.20, 1.06) 0.54 (�0.14, 1.24) 0.55 (�0.16, 1.26)

GDMFH 0.08 (�0.66, 0.78) 0.08 (�0.64, 0.79) 0.05 (�0.76, 0.82) 0.05 (�0.78, 0.84)

Hb13 0.52 (�0.09, 1.15) 0.52 (�0.11, 1.14) 0.56 (�0.11, 1.28) 0.58 (�0.10, 1.31)

MSH �1.35 (�2.66, �0.26) �1.35 (�2.62, �0.25) �1.46 (�2.89, �0.28) �1.48 (�2.89, �0.28)

X1 3.44 (0.73, 6.39) 3.34 (0.68, 6.14) 4.60 (0.77, 8.50) 4.47 (0.65, 8.72)

X2 0.37 (�5.83, 6.50) 0.68 (�5.65, 6.79) 0.85 (�5.37, 7.14) 0.92 (�5.39, 7.52)
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analysis with joint variance priors and that with independent variance priors are similar with one notable
difference: length of the posterior intervals obtained from the former approach is invariably shorter than the latter.

Conditional independence of Wij’s is tested through testing independence of Uij’s. Wald–Wolfowitz runs test of
randomness is used and p values are 0.56 and 0.91 for models with XT

i � N2ð�X,�XÞ and XT
i � t2ð�X,�X, 4Þ,

respectively, indicating no evidence against the conditional independence assumption.

#Prior modeling for

#(log(C1),C2,log(sigma2u)) � G-MVLG(delta,nu,lambdas,mus).

#Below (theta[1],theta[2],theta[3],theta[4])¼

# (log(C1),C2,log(sigma2u))

auu< - 1/sigma2u

sigma2u< - exp(theta[4])

invcovx[1:2,1:2]< - inverse(covx[1:2,1:2])

covx[1,1]< - sigma2.11

covx[1,2]< - sigma2.12

covx[2,1]< - sigma2.12

covx[2,2]< - sigma2.22

#for positive definitness of covx

sigma2.11< - l11 * l11

sigma2.12< - l21 * l11

sigma2.22< - l21*l21þ l22*l22

l11< - exp(theta[1])

l21< - theta[2]

l22< - exp(theta[3])

theta[1] � dflat()

theta[2] � dflat()

theta[3] � dflat()

theta[4] � dflat()

dummy< - 0

dummy � dloglik(phi)

#G-MVLG log(pdf); D is a finite upper bound approximating

#the infinite series in the pdf.

phi< - nu * log(delta)þ log(sum(v[1:D]))

for(i in 1: D) {

v[i]< - (v1[i] / v2[i]) * v3[i]

v1[i]< - pow((1-delta),nu) * (mus[1]

* pow(lambdas[1],-nu-i)) * (mus[2]

* pow(lambdas[2],-nu-i)) * (mus[3]

* pow(lambdas[3],-nu-i)) * (mus[4]

* pow(lambdas[4],-nu-i))

v2[i]< - (pow(exp(loggam(nuþi)),3)

* exp(loggam(nu)) * exp(logfact(i)))

v3[i]< - exp((nuþi) * (mus[1]*theta[1]

þ mus[2]*theta[2]þ mus[3]*theta[3]

þ mus[4]*theta[4]) - ((1/lambdas[1])

* exp(mus[1]*theta[1])þ (1/lambdas[2])

* exp(mus[2]*theta[2])þ (1/lambdas[3])

* exp(mus[3]*theta[3])þ (1/lambdas[4])

* exp(mus[4]*theta[4])))}
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6 Conclusion

In this article, we have proposed modeling the variance components of a random effects model a priori jointly.
Simulation experiment revealed that proposed approach has better posterior qualities compared with standard
Bayesian analysis. This is also reflected in the application section. Our approach provides a nonconjugate
alternative for prior modeling of variance parameters in random effects models. G-MVLG probability density
function is a nonstandard one, requires an infinite series (see Demirhan and Hamurkaroglu7), and not readily
available in OpenBUGS. However, it can be coded using zeros trick as seen in the application section.
Computational complexities may arise if the dimension of the vector of variance components to be modeled
jointly is large, which may be the case, e.g., when Wij model is a polynomial of a large order. Given the
advantages (reduced bias, improved efficiency, and easy coding), it, nevertheless, seems to be a suitable prior
modeling for variance and covariance components especially when the dimension of random/latent terms is
moderate. Extension of the joint Bayesian approach pursued herein to the analysis of response measured at a
primary endpoint and multiple longitudinal covariates of mixed type should be straightforward. The idea
presented here can easily be extended to a wider class of random effects models.
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