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Current statistical methods for analyzing epidemiological data with disease subtype information allow us
to acquire knowledge not only for risk factor-disease subtype association but also, on a more profound
account, heterogeneity in these associations by multiple disease characteristics (so-called etiologic het-
erogeneity of the disease). Current interest, particularly in cancer epidemiology, lies in obtaining a valid
p-value for testing the hypothesis whether a particular cancer is etiologically heterogeneous. We consider
the two-stage logistic regression model along with pseudo-conditional likelihood estimation method and
design a testing strategy based on Rao’s score test. An extensive Monte Carlo simulation study is carried
out, false discovery rate and statistical power of the suggested test are investigated. Simulation results
indicate that applying the proposed testing strategy, even a small degree of true etiologic heterogeneity
can be recovered with a large statistical power from the sampled data. The strategy is then applied on a
breast cancer data set to illustrate its use in practice where there are multiple risk factors and multiple
disease characteristics of simultaneous concern.

Keywords: cancer; disease subtype; odds ratio; polychotomous logistic regression; risk factor; score
test

1. Introduction

One central goal of epidemiological studies of cancer is to study the etiologic heterogeneity in
its subtypes. Etiologic heterogeneity in the subtypes is explained as follows. Consider breast
cancer which is characterized by its histological type (ductal/lobular/tubular/mixed carcinoma),
tumor size ( ≤ 2 cm, 2 cm), tumor grade (1/2/3), nodal status (+/−), estrogen receptor (ER) status
(+/−), and progesterone receptor (PR) status (+/−). Subtypes are the breast cancer classifica-
tions according to these characteristics. The subtypes are etiologically heterogeneous, if the effect
of exposures are different for different subtypes. Etiologic heterogeneity of breast cancer, in par-
ticular, has been under investigation, see [11–13,18,19,29,30] for recent findings. Such studies
have also long been concerned with other types of cancer including ovarian cancer, colorectal
cancer, and non-Hodgkins lymphoma as in [20,22, 23,28].
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In epidemiological case-control studies, statistical approaches to study etiologic heterogeneity
of the disease, where reference is the disease-free situation represented by the study controls,
commonly consist of (i) logistic regression analysis for each disease characteristic, (ii) poly-
chotomous logistic regression analysis for a categorical variable whose levels are the disease
subtypes. In the first approach, etiological heterogeneity in the disease subtypes is studied by
means of heterogeneity in disease’s defining characteristics in terms of their relation with the risk
factors. This approach estimates the odds ratios for each disease characteristic separately ignor-
ing the relation between them. This in fact hampers direct inference on etiological heterogeneity
with respect to disease subtypes. On the other hand, the latter approach provides direct infer-
ence on etiological heterogeneity with respect to disease subtypes as desired. However, it suffers
from high-dimension problem for diseases with large number of subtypes, for example, number
of breast cancer subtypes constructed by grouping the disease according to the characteristics
described in the first paragraph is 4 × 2 × 3 × 2 × 2 × 2 = 192 leading to a polychotomous
logistic regression with 384 parameters (including the intercepts) for a single explanatory vari-
able in the model. Obviously, the dimension of the parameter space will increase substantially
with the inclusion of all risk factors of interest. In such situations, not only does the analysis
suffer from computational burden, but it also results in decreased statistical power and inflated
bias. The bias increases with increasing p/n ratio, where p is the total number of regression coef-
ficients and n is the number of study patients [5]. Cordeiro and McCullagh [7] show for logistic
models that the bias is equal to pβ/n, where β is the vector of unknown regression coefficients.
Also, this approach appears to be inefficient when odds ratios by disease characteristics is desired
in addition to the odds ratios by disease subtypes. Challenges encountered in the statistical
analysis of epidemiological data concerned with cancer subtypes are reviewed by Troester and
Swift-Scanlan [26]. Power analysis of a subtype based approach for etiologic heterogeneity is
given in [1].

Chatterjee [6] developed a two-stage logistic regression (TS-LR) addressing the issues
described above. This model tames the high-dimensionality issue of approach (ii) (e.g. for the
example above, number of association coefficients is 192 in approach (ii) versus 10 if the two-
stage approach was used), readily estimates etiologic heterogeneity in each disease characteristic
adjusted for the others, and provides inference on etiologic heterogeneity in terms of disease
subtypes. The method has been widely used to understand etiologic heterogeneity of colorec-
tal cancer [3,15–17,21] and breast cancer [10,24,27]. As the emphasis on etiologic heterogeneity
increases in cancer epidemiology studies, the need for formal statistical tests for it emerges. Test-
ing etiological heterogeneity can be accomplished using the TS-LR model given its advantages
summarized above and detailed in [6]. In the current article, a strategy based on score test (ST)
statistic is developed to test etiological heterogeneity with respect to the disease defining char-
acteristics. The main advantages of Rao’s ST are that it is invariant to different formulations of
the null hypothesis and requires maximum likelihood estimation on a lower dimension param-
eter space [2,4]. Statistically significant etiologic heterogeneity in terms of the disease defining
characteristics indicates etiologic heterogeneity between the disease subtypes with respect to
the corresponding characteristics. Detecting etiologic heterogeneity in disease subtypes ulti-
mately leads to a better understanding of risk profiles by subtypes (1) and improves effective
treatment options.

In this article, we investigate the statistical properties of the ST in TS-LR and illustrate its use.
We hope that the results of our simulation study ultimately guide the researcher in determining
the sufficient number of study cases from each subtype and use a powerful test for detecting
etiological heterogeneity. Next section reviews the TS-LR model while articulating additional
interpretations and lays out the testing strategy devised. Section 3 gives the results of the sim-
ulation experiment carried out to assess the performance of the testing strategy in terms of its
type I error and power. Section 4 employs the devised strategy to test for etiologic heterogeneity
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in breast cancer for Turkish patients and also shows how it is used in the presence of multiple
covariates. A brief discussion is given in the last section.

2. Notation and testing strategy

2.1 Review of TS-LR

The TS-LR model is a hierarchical model consisting of the following two stages:

P(Yi = m | Xi) = exp(αm + XT
i βm)

1 + ∑M
m=1 exp(αm + XT

i βm)
, (1)

βm = {βi1i2···iK } = θ(0) +
K∑

k1=1

θ
(1)

k1(ik1 ), (2)

where i = 1, 2, . . . , N indexing the study subjects and m = 1, 2, . . . , M indexing the disease
subtypes, N and M are the number of study subjects and disease subtypes, respectively, αm

(m = 1, 2, . . . , M ) determine the baseline prevalence of the different disease subtypes, and βm

denotes the P × 1 vector of regression coefficients associated with P covariates Xi. Below, we
expound on the model basics and advise the reader to refer to [6], for further elaborations. For the
time being, assume a single covariate for ease in illustrating the idea. First stage is the response
model in which multi-level categorical disease subtype variable, Yi, is modeled using a standard
logistic regression given the covariate Xi. In model (1), Yi = m means that disease subtype of
subject i is the one coded by m, while m = 0 refers to the disease-free category. Second stage
consists of models for the first-stage regression coefficients (i.e. for the β coefficients). In the
current article, we concentrate on the diseases in which etiologic heterogeneity with respect to
one characteristic does not depend on the others and thus βm (m = 1, . . . , M ) is modeled as
in model (2). Otherwise, interaction terms are included in this model but this is a concern of
another paper. Each βm can also be denoted by βi1i2···iK , where K is the number of categorical
disease defining characteristics and each of ik , k = 1, 2, . . . , K indexes the specific level of each
characteristic. Model (2) is a design-like deterministic model consisting of a linear combination
of contrast parameters denoted by θs. Each θ(1)

. parameter in the model is a first-order contrast
parameter. Here, θ

(1)

k1(ik1 ) is the logOR associated with having ik1 th level of the characteristic k1

relative to the reference level of the same characteristic for a one unit change in the particular
covariate. To illustrate simply, suppose a cancer described by the following two characteris-
tics; tumor size (small(0)/medium(1)/large(2)) and nodal status (yes(1)/no(0)). Cross-classifying
the levels of the two characteristics results in a six-level subtype with levels being (small,yes),
(small,no), (medium,yes), (medium,no), (large,yes), and (large,no) of which the reference level is
(small,no). Assuming a single risk factor, first-stage slope parameters are β00, β01, β10, β11, β20,

Table 1. Reparameterization of the first stage slopes.

m β Tumor size Nodal status Second stage model

1 β1 = β00 small( = 0) no( = 0) θ(0) + θ
(1)
1(1)

+ θ
(1)
2(1)

2 β2 = β01 small( = 0) yes( = 1) θ(0) + θ
(1)
1(1)

+ θ
(1)
2(2)

3 β3 = β10 medium( = 1) no( = 0) θ(0) + θ
(1)
1(2)

+ θ
(1)
2(1)

4 β4 = β11 medium( = 1) yes( = 1) θ(0) + θ
(1)
1(2)

+ θ
(1)
2(2)

5 β5 = β20 large( = 2) no( = 0) θ(0) + θ
(1)
1(3)

+ θ
(1)
2(1)

6 β6 = β21 large( = 2) yes( = 1) θ(0) + θ
(1)
1(3)

+ θ
(1)
2(2)
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and β21. Reparameterization of those in terms of θs are given in Table 1. The contrast arrays
(θ

(1)

1(1), θ
(1)

1(2), θ
(1)

1(3))
T and (θ

(1)

2(1), θ
(1)

2(2))
T are related with tumor size and nodal status, respectively.

The reference level contrasts are set at 0 for estimability (i.e. θ
(1)

1(1) = θ
(1)

2(1) = 0). Each non-
reference contrast parameter represents the association between the covariate and the odds of a
certain disease characteristic being at a certain level in relation to its reference level. For instance,
θ

(1)

1(2) represents the association between the covariate and the odds of tumor being medium rela-
tive to tumor being small. Also, under the estimability condition, θ(0) is the coefficient specific
to the reference disease subtype and represents the logOR associated with probability of the dis-
ease at the reference level relative to absence of the disease. In the case of multiple covariates,
above ideas are replicated for each covariate with the proper indexing. Proper notations for multi
covariate situations are given in [6]. The TS-LR model is especially beneficial when logOR esti-
mates by cancer characteristics is desired. The θ parameters readily deliver logOR estimates by
disease characteristics, whereas one would have to go through extra calculations to obtain them
when a standard polychotomous logistic regression (approach ii) is used.

2.2 ST for etiologic heterogeneity in TS-LR

Source of etiologic heterogeneity in disease subtypes in terms of their associations with the
risk factors is the etiologic heterogeneity in each disease characteristic. Etiologic heterogene-
ity in terms of the disease defining characteristics indicates etiologic heterogeneity between the
disease subtypes with respect to the corresponding characteristics. Therefore, determining eti-
ologic heterogeneity of the disease boils down to testing the difference between the related θ

parameters for each disease characteristic. For instance, admitting to the illustrative example
above, assuming a single covariate for the time being, the null hypothesis for testing etiolog-
ical heterogeneity in tumor size is H0 : θ

(1)

1(2) = θ
(1)

1(3). The generalization is that for the disease
characteristic k with mk levels, testing its etiological heterogeneity is accomplished by setting
H0 : θ

(1)

k(2) = θ
(1)

k(3) = · · · = θ
(1)

k(mk)
versus H1 : θ

(1)

k(i) �= θ
(1)

k(j) for at least one i, jε{1, 2, . . . , mk}, i �= j.
We derive a ST to test this hypothesis under the models (1) and (2). For a recent informative
account of Rao’s ST refer to [2]. Result of the test sheds light on risk factors with significant
differential effects with respect to disease characteristic levels.

For parameter estimation, pseudo-conditional likelihood (PCL) method, the basics of which
are recapitulated here, is used. Please refer to [6] for further methodological and theoretical
details. This methodology uses a likelihood function where the building blocks are conditional
probabilities. PCL is free of the intercept parameters, namely αm’s and depends only on the
regression coefficients βm’s. In the resulting PCL, βm’s are replaced by the forms in model (2)
and score equations for θ parameters are obtained. Resulting maximum likelihood estimators of
θ parameters were proved to be asymptotically normal.

ST statistics, denoted by Ts, is given in Equation (3).

Ts = S1(θ̃)
T
(ĨT ,11 − ĨT ,12Ĩ

−1
T ,22ĨT ,21)

−1S1(θ̃). (3)

In this formula, S1(θ̃) = (∂/∂ ζ̃ ) log LPCL(θ̃); log LPCL: natural logarithm of PCL function for
TS-LR model [6]; ζ = (θ

(1)

k(2), θ
(1)

k(3), . . . , θ(1)

k(mk)
)T, that is, vector of θ parameters being tested; θ :

all the θ parameters in the model; θ̃ : θ estimates (i.e. maximum likelihood estimates based on
LPCL) constrained by H0; IT : total information matrix; ĨT : IT evaluated at θ̃ ; IT ,11 : partition
of ĨT associated with ζ ; IT ,22 : partition of ĨT associated with θ parameters other than ζ ; IT ,12 :
off-diagonals of ĨT .

Following [2,25], one can easily confirm that asymptotic distribution of Ts in the TS-LR model
is χ2 with degrees of freedom mk − 1. This implies that when subtype frequencies are sufficiently
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large, one can use suitable χ2 quantiles for the test. Then two customary crucial questions fol-
low: How large is sufficiently large? How should the test proceed if subtype frequencies are not
large enough? Our Monte Carlo-based investigation sheds light on these questions. The results
of the simulation study infer a condition for using χ2 (the asymptotic distribution) for perform-
ing the test and the condition is based on minimum of the expected subtype frequencies, that
is, minimum of the subtype frequencies that would have been expected if the disease charac-
teristic of interest was non-heterogeneous with respect to its association with the particular risk
factor of interest. For study designs in which the condition for asymptotic test is not satisfied, a
permutation-based testing procedure is recommended. We derive the permutation algorithm and
provide an outline for it here using the following example. For a 3 × 2 × 2 disease where there
are 3 characteristics with number of levels being 3, 2, and 2, respectively, binary dummy vari-
ables for each characteristic are constructed. To test for etiological heterogeneity of the disease
characteristic – 1, for example, rows of its corresponding dummy variables are permuted (reshuf-
fled) holding the rows of the other characteristics and the covariates untouched. A new column
holding the disease subtype information is then constructed based on the resulting reshuffled lev-
els. We used 10,000 such permuted data sets. The idea behind the permutation method is that the
finite sample distribution of a test statistic under the null hypothesis can be realized by randomly
shuffling the data several times obeying the condition presented in the null hypothesis and cal-
culating the test statistic for each data set obtained as such (see [9,14]). The basis for our choice
of resampling procedure over Bootstrap is that the rationale for permutation method appears to
be clearer for hypothesis testing in linear models. For performing a level-α ST, critical points are
set at (1 − α)th sample quantile of the resulting empirical distribution of the ST statistic. In case
of multiple covariates, the method above is repeated in a similar manner for each covariate.

3. Simulation study

Our purpose is to get a rough idea about the minimum expected subtype frequencies neces-
sary for asymptotic ST and power of permutation-based ST when expected subtype frequency
does not meet the minimum condition. We try to address those via a simple Monte Carlo sim-
ulation study. To study type I error and power, two representative sample sizes are considered,
N = 500 and N = 1000 with equal number of cases and controls. Two separate scenarios are
considered for disease subtypes. First one concerns with a disease with 3 categorical character-
istics each having 2 levels, resulting in 8 subtypes (2 × 2 × 2). The second scenario concerns
with a disease with 3 categorical characteristics having 4, 2, and 2 levels respectively, result-
ing in 16 subtypes (4 × 2 × 2). For convenience, a single covariate is considered and covariate
data are generated from the standard normal distribution. To generate the responses (i.e. disease
subtypes), true values for θ parameters are set as explained in the following two paragraphs
and then true β parameters are obtained using model (2). Then, given βs and Xis, Yis (i.e. dis-
ease subtypes including disease-free case) are generated from a multinomial distribution with
cell probabilities given in Equation (1). Hypothesis of interest is etiologic heterogeneity of a
particular disease characteristic, for example, the first one, and denoted by H0 : θ

(1)

1(2) = 0 and

H0 : θ
(1)

1(2) = θ
(1)

1(3) = θ
(1)

1(4) for the first and second scenarios, respectively. The aim of the simu-
lation study is to investigate the statistical properties of the asymptotic- and permutation-based
STs for testing this type of hypotheses. Nominal significance level is set at 0.05.

We designed the following two-part Monte Carlo experiment to profile empirical false positive
rates (type I errors) of asymptotic- and permutation-based ST for different minimum expected
subtype frequencies. The aim of the first part is to determine true values for θ parameters so that
they lead to a certain minimum expected average subtype frequency under H0 of interest. Then
in the second part, data are generated as explained in the previous paragraph using the θ values
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predetermined by the first part so that we have a control over the minimum expected subtype fre-
quencies in our experiment. In the first part, the sample size N and number of simulated data sets
J are set at large numbers namely 10,000 and 20,000, respectively. Let p̃(j)

1i , p̃(j)
2i , . . . , p̃(j)

mi denote
the probabilities for each disease subtype for subject i in the jth simulated data set which is esti-
mated using models (1) and (2) under the null hypothesis. Then, for each simulated data set,
the probabilities associated with each subtype are averaged over the subjects to obtain an aver-
age probability of having a certain disease subtype. For the jth simulated data set, the average
probability of being in subtype-m is p̄(j)

m· = (1/N)
∑N

i=1 p̃(j)
mi, m = 1, . . . , M . Ultimately for each

subtype, these average probabilities are averaged once more over 20,000 Monte Carlo iterations
as ¯̄pm· = (1/J)

∑J
j=1 p̄(j)

m·. In order to obtain the average expected subtype frequencies, resulting

values are multiplied by the number of the cases ncase as ncase × ¯̄pm·. Minimum of these fre-
quencies are recorded. This work provided an idea about the θ values and the minimum subtype
frequency they eventually lead to in the long run. These particular θ values are then used in the
data generation process to study empirical type I error rates and their relationship with minimum
subtype frequencies for the scenarios considered.

For the power study, true θ parameters are chosen to satisfy H1. The first column of Table 4
shows the alternative values for θ

(1)

2(2) that correspond to varying degrees of etiologic heterogene-
ity most of which are local alternatives. For the case of 4 × 2 × 2, the first two columns of Table 5
imply a different alternative hypothesis each time. Here, 	1 and 	2, respectively, are θ

(1)

1(2) − θ
(1)

1(3)

Table 2. Empirical type I error rates.

N
Min.avr. exp.
subtype freq. Asymptotic Permutation based

500 13 0.0566 0.0460
12 0.0554 0.0540
11 0.0582 0.0520
8 0.0566 0.0500
7 0.0570 0.0520
6 0.0609 0.0610
5 0.0612 0.0560
4 0.0601 0.0540

1000 25 0.0597 0.0400
24 0.0638 0.0560
23 0.0592 0.0570
12 0.0691 0.0570
11 0.0652 0.0540
10 0.0673 0.0530

Note: Disease subtypes= 2 × 2 × 2.

Table 3. Empirical type I error rates.

Min.avr. exp.
subtype freq. Asymptotic Permutation based

12 0.0683 0.0540
11 0.0655 0.0580
10 0.0690 0.0630
8 0.0711 0.0640
7 0.0730 0.0660
6 0.0795 0.0630
5 0.0820 0.0620

Note: Disease subtypes = 4 × 2 × 2; N = 1000.
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and θ
(1)

1(3) − θ
(1)

1(4) which jointly correspond to different degrees of etiological heterogeneity in a
characteristic with 4 levels. For power study 1000 iterations are used.

Results:
The aim of the study in Section 3.1. is to investigate the finite sample properties of the tests

when there are subtype categories with particularly low expected frequencies. Tables 2 and 3
reported the empirical type I error rates for the cases 2 × 2 × 2 and 4 × 2 × 2, respectively. In
these tables, the proportion of the minimum expected subtype frequencies vary between about
1% and 5% of the cases. The results show that, when the minimum subtype frequency is as low
as 1 − 5% of the cases, asymptotic ST is liberal in terms of empirical type I error rate and fails
to maintain the nominal significance level. Practical implication of this finding is that asymptotic
ST should be used when the proportion of study patients in each disease subtype expected under
the null hypothesis is larger than the ones viewed here. Otherwise, the analyst is likely to result in
false positive decision about etiologic heterogeneity. On the other hand, the same tables show that
permutation-based ST maintains the nominal significance level better. The results for 4 × 2 × 2

Table 4. Empirical power.

Min. avr. exp. subtype freq. = 25 Min.avr. exp. subtype freq . = 10

θ
(1)
2(2)

Asymptotic Permutation based Permutation based

0.500 0.9986 0.9980 0.9800
0.400 0.9800 0.9890 0.9210
0.300 0.8813 0.8720 0.7520
0.200 0.5793 0.5730 0.4340
0.100 0.2064 0.2350 0.1700
0.090 0.1799 0.1700 0.1580
0.080 0.1534 0.1460 0.1280
0.070 0.1336 0.1290 0.1050
0.060 0.1145 0.1010 0.1000
0.050 0.0978 0.0840 0.0880
0.040 0.0867 0.0860 0.0780
0.030 0.0755 0.0690 0.0640
0.020 0.0675 0.0480 0.0590
0.010 0.0636 0.0540 0.0640
0.001 0.0604 0.0430 0.0620

Note: Disease subtypes = 2 × 2 × 2; N = 1000.

Table 5. Empirical power (permutation based).

	1 	2

Min.avr. exp.
subtype freq . = 5

Min.avr. exp.
subtype freq . = 12

1.500 1.500 1.0000 1.0000
1.000 1.000 1.0000 1.0000
0.400 0.400 1.0000 1.0000
0.300 0.300 0.9790 0.9800
0.200 0.200 0.7820 0.7980
0.100 0.100 0.2500 0.2950
0.050 0.050 0.1050 0.1090
0.040 0.040 0.0970 0.0970
0.030 0.030 0.0790 0.0800
0.020 0.020 0.0740 0.0610
0.010 0.010 0.0530 0.0550
0.001 0.001 0.0520 0.0570

Note: Disease subtypes = 4 × 2 × 2; N = 1000.
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case with n = 500 is disregarded as they did not add any further information. These results
altogether imply that analyst should prefer the permutation-based test when minimum subtype
frequency does not meet the guidelines produced here for the asymptotic χ2

(1) to hold.
Power comparisons are given in Tables 4 and 5. From Table 4, when there is a subtype category

with expected frequency as low as 5% of the cases (that is the block with 25) in a moderate
situation such as 2 × 2 × 2, asymptotic ST offers slightly larger power than the permutation-
based ST, but at the cost of higher type I error rate. The second block of the table shows that
when there is a subtype category with expected frequency as low as 2% of the cases, the preferred
permutation-based ST achieves 92% power to detect even a small effect size such as 0.4 towards
etiologic heterogeneity (i.e. towards 0). From Table 5, when there is a subtype category with
expected frequency as low as 1% or 2% of the cases, the permutation-based ST achieves about
at least 80% power to detect an effect of size at least (0.2,0.2) towards etiologic heterogeneity.

4. Illustrative example

The testing procedure is applied to understand the heterogeneity in risk factor-breast cancer sub-
type associations in the Turkish female breast cancer patients. The data set is obtained from a
case-control study in Ankara Oncology Research and Education Hospital. There are 500 females
in the study, of whom 249 have breast cancer. Reader should refer to [8] for further study details.
Major tumor characteristics considered for our illustration are tumor size (extended to chest wall
or skin, > 50, > 20 and ≤ 50, ≤ 20 mm), tumor type (invasive ductal, invasive lobular, and
tubular), NA status (metastatis in axillary nodes or not), ER status (+, −), PR status (+, −),
and Her2/neu receptor status ( + , − ) where last levels are the reference levels. Cross-classifying
these levels correspond to 4 × 3 × 2 × 2 × 2 × 2 = 192 breast cancer subtypes. Covariates in
this study consist of the risk and the adjusting factors. Risk factors, namely age at menopause,
age at first menstruation, number of births, age at first birth, age at last birth, duration of breast
feeding, and duration of smoking are ascertained and indexed by p = 1, . . . , 7. Adjusting factors
typical to breast cancer studies, namely age and body mass index, are included in the model and
indexed by p = 8, 9. A TS-LR model and maximum PCL estimation is used. Second stage main
contrast parameters for each of these covariates are estimated and the ones of the main concern
are given in Tables 6 and 7.

Developed testing strategy is employed to investigate the etiologic heterogeneity of the dis-
ease subtypes by means of heterogeneity in disease characteristic-risk factor association. Null

Table 6. Estimates (standard errors) of the second stage parameters.

Covariate θ(0) θ
(1)
1(2)

θ
(1)
1(3)

θ
(1)
1(4)

θ
(1)
2(2)

Age at menopause − 0.0776 0.0532 0.0497 0.0142 0.1328
(0.0032) (0.0020) (0.0047) (0.0113) (0.0072)

Age at first menstruation − 0.2553 0.0411 − 0.0693 0.2469 − 0.3381
(0.0297) (0.0174) (0.0413) (0.0857) (0.0537)

Number of births − 0.1558 0.0282 0.0252 − 0.1795 0.1165
(0.0547) (0.0308) (0.0746) (0.1519) (0.0740)

Age at first birth 0.0038 − 0.0201 0.0380 − 0.0184 0.0771
(0.0040) (0.0023) (0.0053) (0.0133) (0.0087)

Age at last birth 0.0777 − 0.0377 0.0233 − 0.0127 − 0.1510
(0.0035) (0.0020) (0.0053) (0.0133) (0.0084)

Duration of breast feeding − 0.0160 0.0078 0.0016 0.0119 0.0167
(0.0002) (0.0001) (0.0002) (0.0004) (0.0002)

Duration of smoking − 0.0038 0.0097 − 0.1027 − 0.1356 0.0837
(0.0009) (0.0005) (0.0039) (0.0256) (0.0006)
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Table 7. Estimates (standard errors) of the second stage parameters-(continued).

Covariate θ
(1)
2(3)

θ
(1)
3(2)

θ
(1)
4(2)

θ
(1)
5(2)

θ
(1)
6(2)

Age at menopause − 0.0642 − 0.0410 0.0267 0.0763 − 0.0017
(0.0055) (0.0016) (0.0017) (0.0015) (0.0021)

Age at first menstruation 0.2123 0.2005 0.0686 − 0.1204 0.0961
(0.0491) (0.0125) (0.0146) (0.0115) (0.0156)

Number of births − 0.3316 − 0.0537 0.1192 − 0.1081 − 0.1071
(0.0822) (0.0202) (0.0244) (0.0194) (0.0241)

Age at first birth − 0.1124 0.0003 − 0.0210 0.0553 − 0.0592
(0.0078) (0.0018) (0.0021) (0.0017) (0.0026)

Age at last birth 0.0791 − 0.0238 0.0347 − 0.0353 0.0015
(0.0056) (0.0015) (0.0018) (0.0015) (0.0020)

Duration of breast feeding − 0.0001 0.0079 0.0003 0.0101 0.0138
(0.0003) (0.0001) (0.0001) (0.0001) (0.0001)

Duration of smoking 0.0178 0.0003 0.0092 − 0.0488 0.0062
(0.0014) (0.0004) (0.0005) (0.0004) (0.0006)

hypotheses of interest for the pth risk factor then are H0,1,p : θ
(1)

1(4)p = θ
(1)

1(3)p = θ
(1)

1(2)p, H0,2,p :

θ
(1)

2(3)p = θ
(1)

2(2)p, H0,3,p : θ
(1)

3(2)p = 0, H0,4,p : θ
(1)

4(2)p = 0, H0,5,p : θ
(1)

5(2)p = 0, and H0,6,p : θ
(1)

6(2)p = 0,
respectively, for tumor size, tumor type, NA status, ER status, PR status, and Her2/neu receptor
status, for p = 1, . . . , 7. These are indexed by p to indicate that all these need to be run for each
covariate.
Permutation-based ST is applied as it is proved to be more guarded against false discovery com-
pared to its asymptotic counterpart. The reshuffling procedure is repeated 10,000 times and at
each time, a ST statistic corresponding to each risk factor and each hypothesis is calculated and
stored. These values are then used to obtain the required empirical quantile of distribution of the
ST statistic under the null hypothesis for each risk factor. The observed test statistics and the
permutation-based critical points are presented in Tables 8 and 9 herein and Tables 1–4 in the

Table 8. ST results for detecting etiologic heterogeneity for tumor size.

Covariate Ts 95th sample quantile

Age at menopause 0.2360 6.6463
Age at first menstruation 0.8123 4.8740
Number of births 0.0237 5.5642
Age at first birth 4.6794 4.8546
Age at last birth 4.0438 5.8492
Duration of breast feeding 0.2561 4.6109
Duration of smoking 5.7204 7.2364

Table 9. ST results for detecting etiologic heterogeneity for tumor type.

Covariate Ts 95th sample quantile

Age at menopause 1.1109 4.2178
Age at first menstruation 3.1816 3.2365
Number of births 0.4960 3.6309
Age at first birth 0.4106 3.1248
Age at last birth 2.3382 3.8619
Duration of breast feeding 0.5991 2.9056
Duration of smoking 2.0982 4.3071
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supplemental file, each corresponding to a particular disease characteristic as seen. The results
reveal that at the 5% significance level, there is statistically significant evidence in the data set
that PR status and Her2/neu receptor status are etiologically heterogeneous with respect to their
relationship with smoking and breastfeeding durations, respectively (see supplemental material).
That means, smoking has a different effect on PR positive and PR negative breast cancer. Sim-
ilarly, duration of breastfeeding–breast cancer association is significantly different for Her2/neu
receptor positive and negative cancers. Looking back at Table 7, estimate ( − 0.0488) given in
(duration of smoking, θ

(1)

5(2)) suggests that the duration of smoking is more strongly associated
with PR negative-type breast cancers. Also estimate (0.0138) given in (duration of breastfeed-
ing, θ

(1)

6(2)) suggests that the duration of breastfeeding is more strongly associated with Her2/neu
receptor positive-type breast cancers.

5. Discussion

The suggested testing strategy consists of two stages:
Stage 1: Estimate subtype frequencies that would have been expected if the null hypothe-

sis (etiologically non-heterogeneous) was true. The decision as to whether use asymptotic- or
permutation-based test is then made given the minimum of the expected frequencies. The rule
of thumb to which we are led following the results of our simulation study is that avoid using
asymptotic test for etiologic heterogeneity and prefer permutation-based test instead if minimum
expected subtype frequency is less than about 5% of the study cases.

Stage 2: Apply the test chosen at stage 1. Use χ2 tables with appropriate degrees of freedom
for asymptotic test. For permutation test, carry out the permutations as outlined to obtain exact
distribution of the ST statistic under the null hypothesis; use the appropriate empirical quantile
of this distribution to finalize the test.

We considered single covariate in the simulations for clear interpretation of the results. Inclu-
sion of multiple covariates in the model surely would have changed parameter and information
matrix estimates. However, there is no reason to believe that it would have altered the conclu-
sion derived from the simulation results regarding its power properties should we had multiple
covariates. Because each hypothesis is concerned with etiological heterogeneity related with
each covariate separately. Nevertheless, applications with multiple covariate case is addressed in
the application section.

The sample sizes and the number of subtypes utilized may be considered as a semblance of
limitation. However, it does not curb the intuition obtained from this study as to whether to
proceed with asymptotic- or permutation-based test, nor does it preclude generalizing the results
and what this paper aims to contribute to the epidemiological data analysis.
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