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Abstract

Due to the dependency structure, most of the covariance matrix faces

with the singularity problem. There are several methods to overcome

this challenge. The most well-known ones are the eigen-value, singu-

lar value, and cholesky decompositions. In this paper, we develop a

new method to deal with the singularity problem while preserving the

covariance structure of the original matrix and compare our alterna-

tive solution with other methods. For analysis we generate various

covariance matrices that have different dimensions and dependency

structures and compare the CPU times of each approach.

1 Introduction

When dealing with the high dimensional covariance-variance matrix, we

typically face with the singularity problem which causes the inverse and
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square of the underlying matrix intractable. There are a number of meth-

ods to unravel this challenge. The most well-known ones can be listed as

the eigen-value decomposition, singular value decomposition, and cholesky

decomposition. In this study, we suggest an alternative method for these ma-

jor approaches to solve the singularity problem. We perform our suggested

method in different covariance matrices with distinct dimensions and sin-

gularity proportions and we compare our results with the other well-known

methods in terms of computational time. For comparison we use Monte

Carlo methods. In Section 2 we initially explain each method explicitly.

Then in Section 3 we present our comparative analyzes and interpret the

outputs. Finally in Section 4, we summarize the outcomes and discuss the

future works.

2 Methods

2.1 Eigen-value decomposition

Let A be a symmetric matrix and U be a matrix that includes the set of

eigenvectors of A. Finally the diagonal matrix Λ stores the eigenvalues of A

in the diagonal elements. Hence the following equation can be written for

the given terms.

AU = ΛU. (1)

Hereby

A = UΛU−1. (2)

The square root of matrix A can be calculated by taking the square root

of the diagonal matrix Λ via
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A1/2 = UΛ1/2U−1. (3)

If a matrix is positive semi-definite, then the eigen-value decomposition

of this matrix always exists and the associated eigenvalues are always pos-

itive or null. More details can be found in Appendix. The correlation,

covariance, and cross-product matrices can be given as examples of such

types of matrices [1]. In this decomposition, the structure of the matrix can

disappear if the original matrix is singular [2, 5].

2.2 Singular value decomposition

Let A be an (m× n) rectangular matrix which can be written as a product

of three matrices such as an (m × m) orthogonal matrix U , an (m × n)

diagonal matrix Λ, and the transpose of an (n×n) orthogonal matrix V . Λ

is a matrix containing singular values in diagonal elements with descending

order.

Accordingly the singular value decomposition (SVD) of a matrix A can

be presented in terms of U,Λ, V by

A = UΛV T (4)

where the columns of U are orthogonal eigenvectors of AAT and the columns

of V are orthogonal eigenvectors of ATA. Thus the square root of matrix A

can be obtained via

A1/2 = UΛ1/2V T . (5)

Similar to the eigen-value decomposition, the structure of the original

matrix A can change if it becomes nonsingular [2, 5].
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2.3 Cholesky decomposition

If A denotes a symmetric positive definite matrix, the Cholesky decomposi-

tion is an upper triangular matrix U with strictly positive diagonal entries

such that

A = UTU. (6)

Here the matrix U is called the square root of A. But if the matrix A is

positive semi-definite, i.e. some eigenvalues are zero, a numerical tolerance

is used in the decomposition of A. Finally the Cholesky decomposition,

similar to other alternatives, it cannot preserve the original structure of the

matrix when the singularity problem is solved [2, 5].

2.4 New method

We suggest a new updating regime to solve the singularity problem of the

covariance matrix V which enables us to protect the covariance structure of

V by working on the low dimensional matrix. The steps of this regime are

listed as follows [3, 4].

1. By checking the columns of V from left to right, each linearly depen-

dent column V is identified.

2. The dependent columns S, totally | S |, are described as the linear

combination of independent columns.

3. A new (N− | S |) × (N− | S |) dimensional covariance matrix V ∗ is

defined by eliminating | S | dependent columns and rows from VN×N .
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3 Application

In order to compare the performance of each method mentioned above, we

use simulated data. Hereby, we generate different covariance matrices which

are symmetric and singular. In the matrix generation, firstly independent

columns are produced one by one from left to right. Then these columns are

used to construct the linearly dependent columns. To obtain the symmetric

matrix from the underlying singular matrix, the covariance matrix is calcu-

lated. These matrices are generated under two different scenarios. In the

first plan, we generate matrices whose 80 % of the columns are independent

and the remaining 20 % of columns are linearly dependent. Then in the

second scenario, we use matrices whose 80 % of columns are linearly depen-

dent, and the remainings are taken as independent. Under both scenarios,

we use the matrices that have different dimensions, namely, 50 by 50, 100

by 100, 400 by 400, 500 by 500, and 750 by 750.

In this study, all the computational works are carried out in the R pro-

gramming language version 2.10.0 and our codes are executed on Core 2 Duo

2.0 GHz processor. To compare the performance of four different methods,

we check the CPU (Central Processing Unit) times by using two schemes. In

the first scheme to estimate the time of each method, we iterate the MCMC

algorithm 1000 times for each matrix structure with distinct dimensions and

take the mean of the underlying Monte Carlo outputs. However because of

the time restriction and computational inefficiency, we iterate the MCMC

algorithm 250 times for the matrix dimension 750 by 750.

Table 1 and Table 2 show CPU of matrices with 3 different sizes un-

der the first scenario. Although the new method has more computational

steps, it is seen that there is no difference in the computational time of all

methods under low, like (50×50), and moderately high dimensional-matrices
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Table 1: Comparison of CPU time for eigen-value, singular value, and

cholesky decompositions with new method based on different dimensional

matrices under the first scheme and the first scenario.

Dimensions

Methods (50× 50) (100× 100) (400× 400) (500× 500)

Eigen-value decomposition 0 0 0 0.001

Singular value decomposition 0 0 0 0.001

Cholesky decomposition 0 0 0 0

Our method 0 0 0 0.318

Table 2: Comparison of CPU time for eigen-value, singular value, and

cholesky decompositions with new method based on different dimensional

matrices under the first scheme and the second scenario.

Dimensions

Methods (50× 50) (100× 100) (400× 400) (500× 500)

Eigen-value decomposition 0 0 0 0.007

Singular value decomposition 0 0 0 0.007

Cholesky decomposition 0 0 0 0.002

Our method 0 0 0 0.041
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such as the matrices under (100×100) and (400×400) dimensions. Whereas

if we consider very high dimensions, like (500×500) or (750×750), the new

method slightly looses more time with respect to other methods under both

scenarios. For instance the CPU times for the 750 by 750 matrix under

the first scenario with 250 iterations are 0.008, 0.008, 0.002, and 2.147 for

the eigen-value, singular value, cholesky, and our new method, respectively.

Similarly the CPU times for this matrix-dimension under the second sce-

nario are 0.014, 0.014, 0.003, and 0.785 for the same order of decomposition

methods. On the other hand when we increase the number of dependent

columns for the same dimensional matrix, it is seen that all of the methods

own shorter times. However the computational time of our method decreases

more sharply. This result can be interpreted that our new method can be

preferable, specifically, when the singularity of the matrix becomes a severe

challenge.

Whereas as the second scheme for the comparison of time demand, we

report the complete CPU at the end of 1000 Monte Carlo runs. The results

are presented in Table ?? and Table ??. From the listed values, it is seen that

under the first scenario, i.e. when the dependency is not seriously observed

in the matrices, our suggested algorithm uses almost the same computational

times for low and moderately high dimensional matrices. But it becomes

less efficient while the dimension increases (Table ??). On the other hand

when the dependency problem is seriously observed, then our algorithm

becomes the most computationally efficient, in particular, under moderately

and very high dimensional matrices (Table 1). These findings indicate that

our method can be evaluated as a promising alternative approach to deal

with the serious singularity problems under different types of matrices with

less computational demand.
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Table 3: Comparison of total CPU time of 1000 MCMC runs for eigen-

value, singular value, and cholesky decompositions with new method based

on different dimensional matrices under the second scheme and the first

scenario.

Dimensions

Methods (50× 50) (100× 100) (400× 400) (500× 500)

Eigen-value decomposition 0.05 0.03 34.86 27.28

Singular value decomposition 0.03 0.02 13.11 30.72

Cholesky decomposition 0.01 0.03 15.81 27.11

Our method 0.01 0.02 37.68 265.74

Table 4: Comparison of total CPU time of 1000 MCMC runs for eigen-

value, singular value, and cholesky decompositions with new method based

on different dimensional matrices under the second scheme and the second

scenario.

Dimensions

Methods (50× 50) (100× 100) (400× 400) (500× 500)

Eigen-value decomposition 0.03 0.03 2.85 34.6

Singular value decomposition 0.02 0.05 1.47 29.35

Cholesky decomposition 0.03 0.04 0.09 23.48

Our method 0.05 0.05 0.94 9.44
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4 Conclusion and Discussion

In this study, we have developed a new method to deal with the singularity

problem of covariance matrix. We have explained the most well-known

methods used to overcome this challenge such as the eigen-value, singular

value, and cholesky decompositions. Moreover we have generated different

covariance matrices with distinct dimensions and dependency structures.

Then we have implemented these matrices in order to check the performance

of both our new method and the methods mentioned above. Here we have

compared the results according to their computational times.

From the results we have observed that although all methods have the

same mean of CPU times for low and moderately high dimensional matrices,

in the long run, it is seen that our novel algorithm is computationally effi-

cient for highly singular matrices under different dimensions. We consider

that its efficiency comes from its ability to detect the dependency structures

in the matrices and keeping those relationships if they are necessary in fur-

ther calculations. Indeed it is found that since it enables us to keep the

same structure of the original observation as it saves the linear relationship

between each column, it can be more effectively used in simulation study as

well [3]. Because it enables us to regenerate eliminated column by using the

actual linear information of the initial singular matrix.

5 Appendix

If a symmetric matrix A is positive semi-definite, then all its eigenvalues are

nonnegative.

Let e1, e2, ..., ek be normalized eigenvectors of A. Given a column vector U ,
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we can write

U = α1e1 + α2e2 + ...+ αkek. (7)

Hereby

AU = α1λ1e1 + α2λ2e2 + ...+ αkλkek (8)

where λi associates to ei. Then, since eTi ej = 0 for i ̸= j and eTi ej = 1 for

i = j, the following equation can be written as

UTAU = α2
1λ1 + α2

2λ2 + ...+ α2
kλk. (9)

Hence the quantity in (9) is nonnegative if all λi’s are nonnegative.
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