
1 
 

 

MIDDLE EAST TECHNICAL UNIVERSITY 

DEPARTMENT OF STATISTICS 

 

 

 

 

Bootstrapping Conic Multivariate 

Adaptive Regression Splines (Bcmars) 

 

 

İnci Batmaz, Ceyda Yazıcı, Fatma Yerlikaya-Özkurt  

 

METU-STAT-Technical Report-2012- 002 

 

March, 2012 

 

 

DEPARTMENT OF STATISTICS 

MIDDLE EAST TECHNICAL UNIVERSITY 

ANKARA 06531 – TURKEY 
 

 

TECHNICAL REPORT 
 

© Middle East Technical University 
 



2 
 

A COMPUTATIONAL APPROACH TO NONPARAMETRIC REGRESSION: 

BOOTSTRAPPING CMARS METHOD 

ABSTRACT 

Bootstrapping is a computer-intensive statistical method which treats the data set as a 

population and draws samples from it with replacement. This resampling method has wide 

application areas especially in mathematically intractable problems.  In this study, it is used to 

obtain the empirical distributions of the parameters to determine whether they are statistically 

significant or not in a special case of nonparametric regression, Conic Multivariate Adaptive 

Regression Splines (CMARS). CMARS is the modified version of the well-known 

nonparametric regression model, Multivariate Adaptive Regression Splines (MARS), which 

uses conic quadratic optimization (CQP). CMARS is at least as complex as MARS even 

though performs better with respect to several criteria. To achieve a better performance of 

CMARS with a less complex model, three different bootstrapping regression methods, 

namely, Random-X, Fixed-X and Wild Bootstrap are applied on four data sets with different 

size and scale. Then, the performances of the models are compared using various criteria 

including accuracy, precision, complexity, stability, robustness and efficiency. The results 

imply that Random-X method produces more precise, accurate and less complex models for 

medium size and medium scale data.  

Keywords: Bootstrapping Regression, Conic Multivariate Adaptive Regression Splines, 

Fixed-X Resampling, Random-X Resampling, Wild Bootstrap  

1. INTRODUCTION 

Computational Statistics, which is a newer branch of statistics, is the method that uses 

algorithms dependent on computers in order to introduce a new methodology (Wegman, 

1988). Computer-intensive statistical methods and visualization are the basic examples of this 

approach. The developments in the computer science make these methods feasible and 

popular especially after 1980s. Storing huge and high-dimensional data became easier with 

these improvements. 

Bootstrap methods, classification and regression trees, generalized additive models and 

nonparametric regression are the basic methods of computer-intensive statistical methods 

which is another name for computational statistics (Efron and Tibshirani, 1991). 

Computational methods are preferred when numerically tractable and computationally 

intensive questions of interest exist. Thus, these approaches give a way of solving the 

problem.  

Multivariate Adaptive Regression Splines (MARS) is a nonparametric regression, which is 

published by Friedman in 1991. MARS is widely used in modeling including biology, finance 

and engineering. This model is advantageous for handling the nonlinearity in the data. The 

model construction includes two parts: forward and backward. In the forward part, a large 

model is constructed. Then, some of the terms in the model are removed in the backward. 

Yerlikaya (2008) proposed a modification on the backward part of the model and call the new 

model as CMARS (Conic MARS). Later, Weber et al (2011) improved the model. However, 

the number of terms in the CMARS model can be more than the terms in the MARS model 

which leads a model at least as complex as MARS model.  

The aim of this study is to decrease the complexity of the CMARS models. However, the 

mathematical intractability appears here as the lack of distribution fitting. If the distributions 
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of the parameters are known, the statistical significance can be tested with hypothesis testing 

or by constructing confidence intervals. Unfortunately, in the nonparametric regression the 

distributions of the parameters are not known in advance. 

In this study, an empirical distribution is tried to be fitted to each parameter by a 

computational statistics method called bootstrap resampling. Bootstrap is a computer-

intensive method that is heavily dependent on computers (Hjorth, 1994). In this approach, 

samples are drawn from the originals sample with replacement. For each bootstrap sample, 

the parameter of interest is calculated. The statistically significant model parameters are 

determined with the help of this method and insignificant terms are removed. For this 

purpose, three different bootstrapping regression methods, namely Fixed-X, Random-X and 

Wild Bootstrapping are run on four data sets chosen with respect to several criteria. Then, the 

performances of the models are compared according to complexity, stability, accuracy, 

precision, robustness and efficiency.  

In section 2, a brief literature review is given. Then, the methods, including MARS, CMARS 

and bootstrap resampling are expressed in section 3. Applications and findings are discussed 

in the next section.  In section 5, results and discussions are presented. Then, conclusions and 

further studies are given in section 6.  

2. LITERATURE REVIEW 

Ramanathan (2002) defines the models as the underlying, logical structure of the all analysis 

related with the social, economic or physical systems. A model represents the characteristics 

of the system and basic framework of the analysis. According to Hjorth (1994), models are 

simple form of the research phenomenon and the goal of models is to represent the ideas and 

conclusions. In statistics, formulating a model for the scientific question is the first step that 

should be conducted in an empirical study. After obtaining the data, the model should be 

estimated. If there are any assumptions in the model, these should be validated through 

hypothesis testing or with the help of visualization techniques. If the assumptions are 

satisfied, then the results can be interpreted statistically; otherwise necessary attempts have to 

be made to validate them.  

Modeling has a wide range of applications, including engineering, biology, economics, and 

finance. In statistics, parametric and nonparametric models are the two major approaches. If 

the assumptions of the models are hold, parametric models give reliable results. On the other 

hand, in certain situations, it may not be possible to validate the assumptions of a parametric 

model. In this kind of situations, nonparametric modeling is recommended.  

Multivariate Adaptive Regression Splines (MARS) is a nonparametric regression model, 

which is introduced by Jerome Friedman in 1991. This model is advantageous to handle high-

dimensional data and approximate nonlinearity if exists. Moreover, MARS has a wide 

application from biology to finance.  

In recent years, MARS has been conducted in a lot of studies. For instance, Kriner used this 

model for survival analysis in 2007. Zakeri et al. (2010) predict the energy expenditure for the 

first time in this research area by using MARS. Lin et al. (2011) applied MARS to time series 

data. In 2006, York et al. compared the power of the least squares fitting with polynomials 

with MARS. Deconinck et al. (2008) used MARS and Boosted Regression Trees (BRT) for 

the comparison of performances and show that it is better than BRT for fitting nonlinearities, 

being robust to small changes in the data and easier interpretation. Denison et al. (1998) 

provide a Bayesian algorithm for MARS.   
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In 2008, Yerlikaya proposed a modification to the model and call it as Conic MARS 

(CMARS). In this approach, the backward step of MARS is replaced with conic quadratic 

programming (CQP). Then, Batmaz et al. (2010) improved the model to fit nonlinearities 

better. The results indicate that MARS and CMARS perform better than Multiple Linear 

Regression (MLR). Last, in 2011, Weber et al. improved the model and compared it with 

MARS with respect to several criteria. The results show that CMARS is superior to MARS in 

terms of accuracy, robustness and stability under different data features.  

Ozmen et al. (2011) propose a robustification to the CMARS. Alp et al. (2011) compare 

Generalized Additive Models (GAM), CMARS, MARS and Logistic Regression (LR) to 

detect a financial crisis before it occurs. In another study, Taylan et al. (2010), compare 

MARS and CMARS for classification and apply the method to a diabetes data set. 

In the usual parametric modeling, the statistical significance of the model parameters can be 

investigated with hypothesis testing or constructing confidence intervals. However, if there is 

no information on the distributions of the parameters or normality assumption is not possible, 

and then methods in the computational statistics are suggested.    

There are applications of computational methods for estimating the significance of parameters 

in a model. Efron (1988) applies bootstrap to Least Absolute Deviation (LAD) method. Fox 

(2002) uses Random-X and Fixed-X Resampling methods for robust regression which uses 

M-estimator with the Huber weight function. Also, Salibian-Barrera and Zamar (2002) apply 

bootstrapping to robust regression. Austin (2008) replaces bootstrap with backward 

elimination which results a better coverage in percentile CIs.  Yetere-Kursun and Batmaz 

(2010) compare regression methods by employing different bootstrapping methods. 

Flachaire (2003) compares the pairs bootstrap with wild bootstrap for heteroscedastic models.   

Efron and Tibshirani (1993) apply resampling residuals to a model based on Least Median of 

Squares (LMS). Chernick (2008) uses vector resampling for a kind of nonlinear model that is 

used in aerospace engineering. Montgomery et al. (2001) conduct bootstrapping residuals 

method to Michaelis-Menten model, which is a nonlinear regression.    

3. METHODS 

 

3.1.Multivariate Adaptive Regression Splines (MARS) 

MARS is a nonparametric regression model in which there is no assumption between 

dependent and independent variables. It is developed by Friedman in 1991. In terms of 

approximating the nonlinearity in the data and handling the high dimensionality, MARS 

model is one of the best models. In addition to additive models, it is also possible to obtain the 

models with interaction terms.  

MARS constructs models with two parts: forward and backward. In the forward part, a large 

model is obtained. However, this large model leads to overfitting. Thus, a backward part is 

conducted in order to remove terms that do not contribute to the model.  

In nonparametric models, the relationship between response and predictor variables is not 

known. In general, the nonparametric regression model is defined as 

)1(,,2,1,, nixfy iii 
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where β represents the parameters, n stands for the sample size and xi shows the independent 

variables. In the model, f is the unknown form of the function.  

In MARS model, instead of original predictor variables, a special form of them is used to 

construct models. These are called as Basis Function (BF) and represented with the following 

equations: 

otherwise,0

,, txiftx
tx

         
)2(

otherwise,0

,, txifxt
xt

 

where 
jnjj xxxt ,,2,1 ,,,   and called as knot value. Here, these two BFs are the reflected 

pairs of each other. In the notation, p represents the number of independent variables.  

Here, the purpose is to construct reflected pairs for each predictor at the knot value of xij.  The 

collection of BFs are represented by  

)3(, jj xttxC
 

The multivariate spline BFs take the following form to employ the BF that is tensor products 

of univariate spline functions: 

)4(,)(
1

mK

k

kmkmkmm txsxB

 

where mK represents the number of truncated functions in the m
th

 BF, kmx shows the input 

variable corresponding to the k
th

 truncated linear function in the m
th

 BF and kmt is the 

corresponding knot value and kms takes the value of 1 or -1.  

The MARS model is defined as 

)5(,
1

0

M

m

mm xhxf  

where each mh  belongs to the set C and M represents the number of BFs in the current model. 

Given a choice for the ,mh  the coefficients for the parameters ( m ) are estimated by 

minimizing the Residual Sum of Squares (RSS) with the same method similar to the one used 

in the usual Multiple Linear Regression (MLR).  The important point is to determine the 

.xhm  The constant function 1)(0 xh
 
is the first function that is used, and all functions in 

C  are considered as candidate functions. 

The decision on adding a new BF to the current model is explained with the following 

algorithm. Let M represent the current model set. The BFs in the current model are multiplied 

by the BFs in the candidate set C (with their reflected pairs) as shown below:  

)6(.,ˆˆ
21 Mhxtxhtxxh ljlMjlM  

The BF which causes the most amount of reduction in the residual error is added to the model 

first. The parameters are determined by the LS approach. When the maximum number of 

terms (determined by the user) is obtained, the forward part finishes. After obtaining the large 
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model, backward part starts due to overfitting. In this step, a term in the model whose deletion 

causes the least amount of residual squared error is deleted first. This procedure estimates the 

best model, ,ˆ
Mf  of each size (number of terms) .M  Cross validation (CV) is a possible 

solution for finding the optimal value of .M  However, generalized cross validation (GCV) is 

used due to computational purposes. The GCV is defined as    

,
/)(1

ˆ

1

2

nMC

xfy

GCV

n

i

iMi

                           (7) 

where n represents the number of data samples. The numerator of the GCV  is the usual RSS.  

In general, )(MC is calculated by using the following formula:  

1))(()( 1 TT BBBBtraceMC .                      (8) 

)(MC represents the cost penalty measure of a model in which there are M BFs. When the 

minimum value of the GCV is obtained, the MARS model is constructed. 

3.2. Conic MARS (CMARS) 

CMARS is an improved version of MARS. Yerlikaya (2008) proposed the model and later, it 

is improved by and Weber et al. (2011). It uses the BFs coming from forward step of the 

MARS and applies conic quadratic programming for the backward step to prevent overfitting. 

Instead of backward step, Penalized Residual Sum of Squares (PRSS) is constructed as 

follows: 

max

1 2

2
22 2

,

1 1 1
, ( )( , )

( ) ( ) ,

T

Mn
m m

i i m m r s m

i m r s
r s V m

PRSS y f D dx t t

                      (9) 

where maxM is the number of BFs reached at the end of the forward algorithm; 

( ) | 1,2,...,m

j mV m j K   is the variable set associated with thm  BF, m . 

T

mm

m

m

tt ,,,
2


1m
tt represents the variables which contribute to the m

th
  BF, .m  

The m values are always nonnegative and used as the penalty parameters (m=1,2,…, Mmax). 

Moreover, the  values in the following term (13) is taken as 
1 2

, ( ) ( )m mm
r s m m m

r s

D
t t

t t  ,  

1 2 1 2 1 2( , ), , where , 0,1 .
 

If ,2i  the derivative )(,

m

msr tD  disappears, and by addressing indices ,sr the 

Schwarz’s Theorem can be applied. 

The optimization approach to the problem takes both the accuracy and lower complexity into 

account. The term accuracy refers to the small sum of squares of errors. The tradeoff between 

these two terms are expressed by penalty parameters and solved by CQP.  

After making some arrangements, the PRSS takes the following form; 
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max

21
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1
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,
1

)(,

2

,

2

1

2

1 1

0

,)(
M

m
mVsr

sr

mm

msrmm

n

i

M

m

M

Mm

m

imm

m

immi

dD

xyPRSS

tt

x

                                                       (10) 

where ( , ,..., )T

i i i, i,px x xx  represents any of the independent variables and 

1 2, , ,( , ,..., )
Km

m T

i i i i  = x x xx  stands for the corresponding projection vectors of 
ix  onto those 

coordinates which contribute to the m
th

 BF, and they are related with the i
th

 output 
iy . Those 

coordinates are collected from the set .mV   

The input data which is represented by ,1 ,2 ,( , ,..., )T

l l l l px x xx
 
generates a subdivision of any 

sufficiently large parallelpipe Q of IR
n
 .The parallelpipe, which is represented byQ , contains 

all the input data, and it is expressed as 

1 1 2 2

1

, , ... ,
p

p p j

j

Q a b a b a b Q

                                                                             (11) 

where , ,j j jQ a b  , ( 1,2,..., ;  1,2,..., )j l j ja x b j p l N . 

The parallelpipe is expressed as  


n p

j

jljl
j

jj
xxQ

0 1

,, 1
,

                                                                                                        (12) 

So the PRSS takes the following form;

 

 

max

1

1 2

2

1

2
2

2

, , , , , ,
1 1 1( )

, ( )( , )

( )

( , ,..., ) ,
m

m m m m m
m j m j m j m j m j

j j j j j j

T

n

i i

i

KM

m m r s m l l l l l
m r s j

r s V m

PRSS y

D x x x x x

d

 

where m

m

j K

Kj n 1,,2,1,0,,2,1 
 
.                                (13)

 
The following notations related with )( i  are defined in order to use in the forward steps: 

 
, , ,

ˆ , ,...,m m m
m j m j m j
j j j

m

i l l l
x x xx

,                             (14)

1

, ,
1

ˆ
m

m m
m j m j
j j

K
m

i l l
j

x xx
.                     (15) 

The approximation to the PRSS is defined as 
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max

1 2

2

1

( 1) 2
2

2

,

1 1 1
, ( )( , )

( )

ˆ ˆ( ) .

Km

T

n

i i

i

M N
m m

m m r s m i i

m i r s
r s V m

PRSS y

D

d

x x

 

 

 

max

1

)1(

1

22
2

2
,

M

m

n

i

mmm

mK

LdyPRSS

 

where 
1( ) ( ),..., ( )

T

Nd d d  is a matrix with dimensions of 1maxMn
 
, and 

2
 

denotes the Euclidean norm and the numbers 
imL  are defined as 

1
2

1 2

2
2

,

1
, ( )( , )

ˆ ˆ( ) .

T

m m

im r s m i i

r s
r s V m

L D x x

                                                     

 

The PRSS can be taken from the view point of CQP, a technique used for continuous 

optimization. Thus, the Tikhonov regularization problem can be formulated again by using 

the CQP. The optimization problem below is considered by putting an appropriate bound, M.  

2

2

2

2

min ( )

subject to .M

d y

L                                                                                                          (18) 

Thus, the problem can be expressed as a CQP problem with the following way 

2

2
, ( 1,2,..., ).min subject to  T

i ii i
T q i k

x
c x p xD x d

 

where 

max 1(1,0 ) ,T T

Mc ( , ) ,T Ttx
1 (0 , ( )),nD d  1 ,d y 1 (1,0,...,0) ,T

p 1 0q , 

Max2 1(0 , )MD L ,  
max2 M 10d , 

max2 20Mp   and 2q M . 

The problem (Equation 18) should be reformulated to obtain the optimality condition as the 

following 

 

                      (16) 

 

                          (17) 

                (19) 
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maxmax

max

max

,

1

11

1

21

min ,

( )
such that ,

1 0

,
0

, ,

t

n

T

M

MM

T

M

Mn

t

t

t

M

L L

0

0

00

0

d y

L

                                                  

 

where max 21,
MnL L are the ( 1n ) and (

max 2M ) dimensional ice-cream (or second-order, 

or Lorentz) cones, defined by  

 
1 1 2 2 2

1 2 1 1 1 2( , ,..., ) | ... ( 1).n T n

n n+ nL x x x x x x x nx                 (32) 

Moreover, 
1 2( , , , , , )t  is a primal dual optimal solution if and only if   

,
101

,
0

1

,
01

1maxmax

max

max

max

max

max

max

2

1

1

1

1

1

1

1

1

MM

T

T

M

M

T

T

n

M

T

M

M

T

M

n

Ld

M

t

yt

0
ω

0

0
ω

0

0

0

θ0

0
η

θ0

dψ0
χ

                                                   (33) 

.,,,

,0,0

212

2

1

1

21

maxmax MnMn

TT

LLLL ηχωω

ωχω
 

 

 

 

3.3 BOOTSTRAP 

The bootstrap is a resampling technique which takes samples from the original data set with 

replacement.  It is a data-based simulation method useful for producing inferences. The 

application of this method is not difficult, but depends heavily on computers. Thus, they are 

called computer-intensive methods (Chernick, 2008). The application of bootstrap includes 

estimation of standard errors and bias, constructing confidence intervals, hypothesis testing, 

classification, etc. The bootstrap procedure can be explained with the following steps. 

1. Generate a random sample (x
*b

) of size n (the same sample size with the original data) 

from the empirical distribution with replacement.  

2. Compute the value of the statistic of interest for this sample. 

3. Repeat steps 1-2 B times (i.e. b = 1,…, B). 

 

3.3.1. Bootstrapping Regression 

Let niforxY i

T

ii ,,1,   be the usual MLR model. In the model, xi represents the 

independent variables and β shows the parameters. The error terms, εi, are normally 

distributed with zero mean and constant variance. The parameters, β, are distributed normally.  

                        (31) 



10 
 

If all assumptions of the model are satisfied, then the model is appropriate for the data and the 

results will be reliable. However, in the following cases there are some problems (Hjorth, 

1994). If  

 the model is non-linear, 

 the statistical analysis of estimation has no direct classical solution, 

 errors are not normally distributed, 

 there are parameters dependent on another function.  

Efron and Tibshirani (1993) indicate that bootstrap is applicable to general models including 

non-linearity of parameters; fitting methods different from LS approach by giving reasonable 

outputs. According to them, bootstrapping regression is applicable to models that have a 

mathematical form in addition to models that have no mathematical solution. 

3.3.2.1 Fixed-X Resampling (Residual Resampling) 

Random-X Resampling (Pairs Bootstrap) 

It is recommended to be used when there is heteroscedasticity in the residual variance or 

correlation structure in the residuals, or it is suspected that some important parameters are 

missing in the model (Chernick, 2008). 

Step 1: Select B bootstrap samples of  nixxxyz ikiiii ,,1),,,,,( 21

'   

Step 2: Fit a model to the vector 
'

iz   and obtain the estimates of parameters (β) and save them.  

Step 3: Repeat this procedure B times and obtain bootstrap estimates of parameters.  

The design X is assumed to be deterministic as in the usual regression approach. But this 

approach makes the X matrix random so the estimates will lead to the variability.  

This method can be more advantages to be used in the following cases:  

 If the distribution of the error terms is different for the independent variables (i.e. 

heteroscedasticity, skewness),  

 If the non-linearity part is not well-defined, 

 For large sample sizes, if the data consists influential observations, in case of 

heteorscedasticity or skewness. 

 

3.3.2.2 Fixed-X Resampling (Residual Resampling) 

In this model, the response values are taken as random due to the error components. Its use is 

recommended in case of identically distributed errors (Fox, 2002). 

Step 1: Fit a model to the data and obtain the fitted values, iŷ and the residuals, i
ˆ . 

Step 2: Select a bootstrap sample of residuals and add them to the fitted values. These new 

fitted values are now new response variables, binew yy ˆˆ . 

Step 3: Fit a model to the original independent variables and new response variables. Obtain 

the new parameters, Xynew .  

Step 4: Repeat this procedure B times and collect the parameters. 
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This method can be more advantages to be used in the following cases:  

 If there is no doubt about the adequacy of the model,  

 If the predictors are considered as fixed,  

 For small data sets or data with influential observations. 

 

 

3.3.2.3  Wild Bootstrap 

The wild bootstrap is a new approach for heteroscedastic models. According to Liu 

(1988), the errors of the model have two-point distribution which is called Rademacher 

distribution, and defined as follows: 

otherwise

x

x

xf

,0

1,5.0

1,5.0

)(

 .                     (34)

  

Step 1: Fit a model to the data and obtain the fitted values, iŷ , and the residuals, i
ˆ . 

Step 2: These new fitted values are now new response variables, binew yy ˆˆ , where 

the error distribution is the f(x) given in (34).
  

Step 3: Repeat this procedure B times and collect the parameters. 

In the wild bootstrap, the errors are randomly assigned as 1 or -1 and attached to the 

fitted values.  

Flachaire (2005) suggests the use of wild bootstrap instead of pairs bootstrap in case of 

heteroscedasticity since the simulation studies give better results.  

The choice of the bootstrapping regression model depends on how well the assumptions 

of the model are satisfied. For instance, if the model is MLR, then the errors must be 

independent from the covariates and must be i.i.d. Then, the Fixed-X resampling is 

reliable. However, Random-X resampling is not as conservative as the Fixed-X 

resampling.  It performs better even when the assumptions are not satisfied. 

Percentile Interval 

Percentile interval uses the Empirical Cumulative Distribution Function (ECDF) of the 

bootstrap sample to find the upper and lower endpoints. It is defined as  

)2/1*()2/*( ˆ,ˆ
BB

.         

 

3.3.4. Bootstrap Estimate of Bias 

Bias is used to investigate the performance of a measure (Martinez and Martinez, 2002). 

Actually, it measures the statistical accuracy of a measure. It is defined as  

,][)( TETbias                                                                                                                 (35)                         

In general, it is the difference between the expected value of a statistic and the parameter 

value. For bootstrap estimate of bias, the empirical distribution of the parameter is used. It is 

defined as the following formula. 

,ˆˆˆ *

Bsbia                                                                                                                      (36) 
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where 
B

b

b

B 1

** )ˆ(
1ˆ .                                                                                                          (37) 

where *ˆ  is the mean of the values obtained by bootstrapping. The bias corrected estimate is 

explained by the following formula. 

.*ˆˆ2
~

.                                                                                                              (38)                                                                            

 

3.3.4. Cross Validation (CV) Technique and the Performance Criteria  

In the comparison of models, 3-fold CV technique is used (Martinez and Martinez, 2002; 

Gentle, 2009). In this technique, data sets are randomly divided into three parts (folds). At 

each attempt, two folds (66.6% of observations) are used to develop models while the other 

fold (33.3% of observations) is kept to test them.  

The performances of the models developed are evaluated with respect to different criteria. 

These include accuracy, precision, complexity, stability, robustness and efficiency.  The 

accuracy criterion is used to measure the predictive ability of the models while precision 

criterion is used to determine how variable the parameter estimates are; the less variability 

indicates more precision. The MAE, R
2
, PWI and PRESS measures are used to evaluate the 

models according to accuracy. On the other hand, the precision of parameter estimates are 

determined by their empirical CIs. Other criterion used in the comparisons is the complexity; 

it is measured by the MSE. Besides, the stabilities of the accuracy and complexity measures 

obtained from the training and test data sets are also evaluated. The definitions of these 

measures are placed in Appendix. Furthermore, robustness of the measures with respect to 

different data sets are evaluated by considering the standard deviations of the measures. 

Moreover, to assess the efficiency of the models build, computational run times are utilized. 

4. APPLICATION AND FINDINGS 

 

Table 1. Data Sets Used in the Comparisons 

 

Scale (p) 

 

 

 

 

Sample 

Size (n) 

(n, p) Small Medium 

Small Data Set 1: 

Concrete Slump 

(CS) (Yeh, 2007). 

(103,7) 

Data Set 2: 

Uniform Sampling (US) 

(Kartal, 2007) 

(160,10) 

Medium 
Data Set 3: 

PM10(Aldrin, 2006). 

(500,7) 

Data Set 4: 

Forest Fires (FF) (Cortez 

and Morais, 2007). 

(517,11) 

 

 

In order to evaluate and compare the performances of the models developed by using the 

MARS, CMARS and Bootstrapping CMARS (BCMARS) methods, they are run on four 

different data sets to observe the effects of certain data characteristics such as size and 

complexity on the methods’ performances. In this study, two-third of the observations is used 
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for training and the rest is used for testing the model. Each fold is taken as testing once, thus 3 

models are obtained for a data set.  

To fit a MARS model to a data set, the R package “Earth” (Milborrow, 2009) is preferred 

due to the lack of MARS code in MATLAB.  Then, the code written in MATLAB (2009a, 

The MathWorks, U.S.A.) by Yerlikaya (2008) and developed further by Batmaz et al. (2010) 

is used to obtain CMARS models. For optimization process, the MOSEK optimization 

software (6, MOSEK ApS, Denmark) is utilized. Then, all computations, including 

nonparametric bootstrap, are run using the code written in MATLAB. 

The following steps belong to the algorithm followed for obtaining three different BCMARS 

models, labeled as BCMARS-1 (uses Fixed-X Resampling), BCMARS-2 (uses Random-X 

Resampling) and BCMARS-3 (uses Wild Bootstrap). 

Step 1: The set of BFs (from the first part of the MARS algorithm) are obtained. The BFs are 

considered fixed and they will be used for bootstrapping. 

Step 2: A CMARS Model is constructed and the optimal value of M is found. To achieve 

this, the curve of RSS  versus norm of L  in the log-log scale is obtained (see Figure 4). 

The optimal value of this curve is the corner point which is demonstrated by a red point. The 

selected value gives the best solution for both accuracy and complexity.  

Step 3: Since there is not a distributional assumption, nonparametric bootstrap is used for the 

analysis. 

 BCMARS-1:  the original data is used to obtain the residuals and fitted values. The 

bootstrap sample of residuals are selected with replacement and added to the fitted 

values, so the new dependent variable is obtained. A model is constructed by using the 

fixed independent variables and this new dependent variable to obtain the parameters 

of BFs. 

 BCMARS-2: the bootstrap sample of the data (including independent and dependent 

variables) is selected. This bootstrap sample and the BFs coming from Step 1 are used 

to obtain the parameters of the model (including the intercept).  

 BCMARS-3: a model is fitted to the original data and the fitted values are obtained. 

The bootstrap sample of errors is obtained with Rademacher distribution. The fitted 

values and the bootstrap sample of errors are added to obtain new response variable. A 

model is constructed by using the fixed independent variables and this new dependent 

variable to obtain the parameters. 

 Step 4: Step 3 is repeated 1000 times and the ECDF of each parameter is obtained. 

Step 5: For the significance level taken as α = 0.1, the percentile CI of each parameter is 

constructed. If this interval includes zero, the corresponding BF is removed from the model.  

Step 6: The Steps 2-5 are reapplied with the remaining BFs until all the CIs of the parameters 

do not include zero.  

The percentile method is used for conducting the CIs, since there is no know form of the 

distribution of parameters. Efron and Tibshirani (1993) suggest the number of bootstrap 

samples to be as at least 1000 to construct percentile intervals.  Then, the performance 

measures of each model obtained in three different ways are calculated. Moreover, the 

computational run time of the methods are recorded to be compared.     
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5. RESULTS AND DISCUSSION 

In this section, it is aimed to compare the performances of the methods studied, namely 

MARS, CMARS, BCMARS (Fixed-X Resampling, Random-X Resampling and Wild 

Bootstrapping) in general (Section 5.1), and also, according to different features of data sets 

such as size (Section 5.2) and scale (Section 5.3). In these comparisons, various criteria 

including accuracy, precision, stability, efficiency (Section 5.4) and robustness are 

considered. 

5.1. Comparison with respect to Overall Performances 

The mean and standard deviations of measures obtained from four data sets are given in Table 

2. These values are calculated for training and testing data sets in addition to the stability of 

measures. Definitions of the measures are given in Appendix. In this table, lower means for 

MAE, MSE and PRESS and higher means for R
2
 and PWI measures indicate better 

performances. On the other hand, smaller standard deviations imply robustness for the 

corresponding measure.  The following conclusions can be drawn from this table: 

For training data sets: 

 Fixed-X Resampling provides best performance with respect to MAE and R
2
 accuracy 

measures. This method is the most robust among the others with respect to the same 

measures. These findings are also valid with respect to the complexity measure, MSE, 

as well.  

 MARS, however, performs best with respect to the other accuracy measures PWI and 

PRESS. This method is the most robust among the others with respect to the same 

measures. 

 When the bootstrapping models are compared among themselves, the Fixed-X 

Resampling method overperforms with respect to the means and spreads of all 

measures except the spread of PWI. Random-X Resampling is the most robust one 

with respect to the PWI measure. 

For testing data sets: 

 Random-X performs best with respect to most of the measures, namely MSE, R
2
 and 

PRESS. It also produces more robust models for the same measures. Moreover, it 

gives the least complex models as well by providing the smallest MSE mean value. 

 MARS has the best performance with respect to the only one accuracy measure, MAE. 

It is also the most robust for the same measure. 

 CMARS, on the other hand, is the best performing and also the most robust method in 

terms of PWI.  

 When only the bootstrapping methods are considered, Fixed-X Resampling is the best 

one with respect to the performance measure MAE, and Wild bootstrapping is the 

most robust one for the same performance measure. Moreover, Random-X 

Resampling has the highest PWI coverage, and Wild bootstrapping is the most robust 

with respect to PWI. 
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Table 2. Overall Performances (Mean±Std. Dev.) of the Methods  

 

Performance 

Measures 

Training 

MARS CMARS BCMARS-1 BCMARS-2 BCMARS-3 

MAE 0.3453 ±0.2336 0.4040 ±0.3980 0.3204*±0.2260** 0.3356 ±0.2263 0.4251 ±0.2797 

MSE 0.4015 ±0.3064 0.6070 ±0.9080 0.3117*±0.2700** 0.4230 ±0.3990 0.5770 ±0.4950 

R
2 0.6005 ±0.2797 0.5911 ±0.3407 0.6827*±0.2492** 0.6120  ±0.3350 0.5127 ±0.3398 

PWI 0.9944*±0.0082** 0.9942 ±0.0082** 0.9909 ±0.0153 0.9932 ±0.0140 0.9855 ±0.0158 

PRESS 0.0097*±0.0230** 72.0000 ±248.80 0.2390 ±0.7570 1.2090 ±3.0150 13.5x10
6
±4.7x10

6
 

Performance 

Measures 

Testing 

MARS CMARS BCMARS-1 BCMARS-2 BCMARS-3 

MAE 0.4576*±0.2956** 0.5800 ±0.4580 0.4838±0.3076 0.6460±0.6110 0.4977±0.2998 

MSE 3.0700±7.0900 1.5780 ±2.1350 1.2670±1.9970 0.5480*±0.3660** 1.0720 ±1.2710 

R
2 0.4480±0.3820 0.3630±0.4030 0.4500±0.3800 0.4530*±0.3770** 0.3840±0.4010 

PWI 0.9930*±0.0108 0.9930*±0.0106** 0.9884±0.0177 0.989±0.0169 0.9878±0.0120 

PRESS 470±996 491±287 459±1037 107.700*±189.10** 1.4x10
6
±0.5x10

6
 

Performance 

Measures 

Stability 

MARS CMARS BCMARS-1 BCMARS-2 BCMARS-3 

MAE 0.7657±0.1848 0.7440±0.2383  0.7252±0.1939  0.7375±0.2870 0.8690*±0.1783** 

MSE 0.5500 ±0.3710 0.5690±0.3400 0.5550±0.3450 0.6374±0.2174** 0.7616*±0.2852 

R
2 0.6070±0.3680 0.4690±0.3940 0.5750±0.3640 0.6577*±0.3063** 0.6300±0.3650 

PWI 0.9950*±0.0070 0.9940±0.0070 0.9940±0.0070 0.9950*±0.0060** 0.9940±0.0080 

PRESS 0.0003±0.0005 0.0±0.0** 0.0100±0.0270 0.0020±0.0050 0.1000*±0.2733 

                       *indicates better performance with respect to means; **indicates better performance with respect to spread 
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For stability; 

 Random-X Resampling and Wild bootstrapping methods are more stable when 

compared to the other methods.  

 Random-X is more stable with respect to R
2
 and PWI; it has the most robust 

stability with respect to the same measures, and also has the most robust stability 

with respect to the MSE.  

 Besides, Wild bootstrapping is more stable in terms of MAE, MSE and PRESS; it 

has the most robust stability with respect to the MAE measure only. 

 CMARS has the most robust stability with respect to PRESS.  

5.2. Comparison with respect to Sample Sizes 

Table 3 presents the performance measures of the studied methods with respect to two 

sample size categories: small and medium. Depending on the results given in the table, 

following conclusions can be reached: 

 Small training and testing data sets produce better models for all measures except 

PRESS compared to the medium training and testing data sets. 

 All methods are more stable in small data sets with respect to R
2
, PWI and PRESS.  

 Wild bootstrapping is more stable in small data sets with respect to all measures 

except PWI. 

 Fixed-X method produces the lowest MAE for small size training data sets, while 

MARS has the best value for this measure in testing samples.  

 Fixed-X produces the lowest MSE value in both small and medium sized training 

samples. However, MARS is the best method for the MAE in small data while 

Random-X is the best one in medium size testing data. 

 Fixed-X method is superior to other methods in terms of R
2
 for small and medium 

size training data sets, while MARS is the best one for testing small and medium 

size data sets. 

 MARS and CMARS are the best methods with respect to PWI measure in both 

types of testing data. Both methods also perform similar with respect to the same 

measure in training samples. 

 Random-X Resampling is the best method for the PRESS measure in small testing 

samples while MARS is the best model for PRESS is medium training samples. 

On the other hand, Fixed-X gives the best result in small training samples with 

respect to the same measure. 

 In terms of the complexity measure, MSE as well as the accuracy measures MAE 

and R
2
, Wild bootstrapping and the Random-X are the most stable methods in 

small and medium size data sets. 

 MARS and Wild bootstrapping methods are the most stable methods in small and 

medium size data sets with respect to PWI, respectively. 

 Wild bootstrapping is the most stable method in both size data in terms of the 

PRESS measure. 
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Table 3. Averages of Performance Measures with Respect to Different Sample Sizes 

 

Sample 

Size 
Performance 

Measures 
Training 

MARS CMARS BCMARS-1 BCMARS-2 BCMARS-3 

Small MAE 0.2340 0.3570 0.1899* 0.2092 0.3410 

MSE 0.1773 0.6020 0.1158* 0.1387 0.3000 

R
2
 0.8208 0.7840 0.8824* 0.8596 0.7350 

PWI 1.0000* 0.9970 0.9910 0.9910 0.9870 

PRESS 0.0170 144 0.0150* 0.0140 0.0340 

Medium MAE 0.4563 0.4498* 0.4769 0.4874 0.5090 

MSE 0.6257 0.6125 0.5469* 0.7630 0.8540 

R
2
 0.3802 0.3978 0.4431* 0.3140 0.2908 

PWI 0.9888 0.9900* 0.9890 0.9940* 0.9830 

PRESS 0.0020* 0.2440 0.5080 2.6400 27x10
6
 

Sample 

Size 
Performance 

Measures 
Testing 

MARS CMARS BCMARS-1 BCMARS-2 BCMARS-3 

Small MAE 0.3300* 0.5560 0.3440 0.7280 0.3790 

MSE 0.3520* 1.0010 0.3980 0.3670 0.3570 

R
2
 0.7110* 0.5760 0.6770 0.6800 0.6500 

PWI 1.0000* 1.0000* 0.9910 0.9910 0.9920 

PRESS 23.200 122.70 35.000 18.650* 22.700 

Medium MAE 0.5849 0.6052 0.6518 0.5468* 0.6160 

MSE 5.7800 2.1500 2.3100 0.7658* 1.7880 

R
2
 0.1853* 0.1497 0.1765 0.1817 0.1178 

PWI 0.9860* 0.9860* 0.9850 0.9860* 0.9830 

PRESS 918.00 860.00 968.00 215.00* 2.9x10
6
 

Sample 

Size 
Performance 

Measures 
Stability 

MARS CMARS BCMARS-1 BCMARS-2 BCMARS-3 

Small MAE 0.2250 0.7300 0.7265 0.6110 0.9359* 

MSE 0.4980 0.5770 0.5750 0.5530 0.8835* 

R
2
 0.7700 0.5960 0.7350 0.7510 0.7710* 

PWI 1.0000* 0.9970 0.9990 0.9990 0.9940 

PRESS 0.0007 0.0469 0.0189 0.0040 0.1660* 

Medium MAE 0.4431 0.7578 0.7236 0.8888* 0.8022 

MSE 0.5760 0.5620 0.4410 0.7049* 0.6150 

R
2

 0.4450 0.3410 0.3830 0.5460* 0.4890 

PWI 0.9915 0.9900 0.9898 0.9920 0.9948* 

PRESS 0.0000 0.0003 0.0000 0.0012 0.0457* 

              *indicates better performance with respect to the corresponding measure and sample  

 

5.3. Comparisons with respect to Scales 

In Table 4, the performance measures of the studied methods with respect to two scale 

types; small and medium are presented. Depending on the results given in the table, 

following conclusions can be drawn: 

 Medium scale training data sets produce better models for all methods with 

respect to all measures except PWI. 
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             Table 4. Averages of Performance Measures with Respect to Different Scale 

Scale Performance 

Measures 
Training 

MARS CMARS BCMARS-1 BCMARS-2 BCMARS-3 

Small MAE 0.5229 0.4140* 0.4720 0.4910 0.6561 

MSE 0.4572 0.8992 0.3830* 0.4040 0.7728 

R
2
 0.5483 0.4985 0.6139* 0.5928 0.4078 

PWI 0.9970 0.9924 0.9980* 0.9980* 0.9934 

PRESS 0.0214* 143.66 0.4320 2.1910 2.7000 

Medium MAE 0.1677 0.1773 0.1384* 0.1492 0.1940 

MSE 0.3417 0.3500 0.2260* 0.4450 0.3810 

R
2
 0.6591 0.6630 0.7650* 0.6340 0.6170 

PWI 0.9913 0.9920* 0.9820 0.9870 0.9770 

PRESS 0.0017 0.0010* 0.0080 0.0300 0.0060 

Sample 

Size 
Performance 

Measures 
Testing 

MARS CMARS BCMARS-1 BCMARS-2 BCMARS-3 

Small MAE 0.6696 0.5445* 0.6747 0.6776 0.7130 

MSE 0.7327* 2.3959 0.7717 0.7443 0.8469 

R
2
 0.3297 0.3377* 0.3240 0.3293 0.2721 

PWI 0.9964* 0.9901 0.9960 0.9960 0.9932 

PRESS 213.00 800.69 176.94 141.72* 2.9x10
6
 

Medium MAE 0.2703 0.2790 0.2550* 0.6070 0.2820 

MSE 5.4630 1.7800 1.8600 0.3130* 1.2980 

R
2
 0.5107 0.5040 0.6000 0.6020* 0.4960 

PWI 0.9892 0.9900* 0.9790 0.9810 0.9820 

PRESS 1012.8 714.00 714.00 66.800* 419.00 

Sample 

Size 
Performance 

Measures 
Stability 

MARS CMARS BCMARS-1 BCMARS-2 BCMARS-3 

Small MAE 0.5008 0.7801 0.7041 0.7300 0.9200* 

MSE 0.6515 0.5771 0.5183 0.5539 0.8378* 

R
2
 0.6521* 0.3714 0.5540 0.5539 0.6277 

PWI 0.9984* 0.9930 0.9977 0.9979 0.9980 

PRESS 0.0003 0.0828* 0.0005 0.0013 0.0471 

Medium MAE 0.7666 0.7900 0.7505 0.7470 0.8100* 

MSE 0.3474 0.5920 0.3480 0.8040* 0.6850 

R
2
 0.5628 0.5310 0.6000 0.7600* 0.6330 

PWI 0.9931* 0.9930* 0.9910 0.9930 0.9920 

PRESS 0.0004 0.0460* 0.0220 0.0040 0.1650 

            * indicates better performance with respect to the corresponding measure and scale 

 

 Medium scale data sets produce more stable models for all methods for MAE, R
2
 

and PRESS. On the other hand, small scale data yield more stable models for 

MSE and PWI. 

 In small scale training samples, CMARS produces similar results with Fixed-X 

and Random-X Resampling for MAE measure. However, in small scale testing 

samples, MARS, Fixed-X and Random-X yield similar values for the same 

accuracy measure.  

 Fixed-X Resampling is the best method with respect to the complexity measure, 

MSE, in small and medium scale training data sets. However, MARS and 

Random-X are the best methods for the same measure in small and medium scale 

testing samples, respectively. 
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 The best model in terms of R
2
 is yielded by Fixed-X in both scale training 

samples, while CMARS and Random-X produce the best for the same measure in 

small and medium scale testing data, respectively. 

 Fixed-X and Random-X models are superior to others in terms of PWI in small 

scale training samples. In medium scaled training samples, however, CMARS 

produces the best value for the same measure. On the other hand, in testing 

samples, MARS and CMARS give the best models with respect to PWI in both 

small and medium scale. 

 Random-X Resampling is the best model for PRESS in all testing samples. But, 

MARS and CMARS result in better PRESS values all training data.      

 Wild bootstrap is superior to other methods with respect to the stability of MAE 

in all type data sets.  

 MARS seems more stable in terms of PWI in type data sets. 

 Wild bootstrapping is superior to other methods with respect to the stability of 

MSE, the complexity measure, in small scaled while Random-X Resampling is 

the best method in medium scaled data with respect to the stability of the same 

measure.  

 MARS and Random-X are the most stable in R
2 

in small scale data and medium 

scale data, respectively. 

 CMARS is the most stable method with respect to the PRESS measure for both 

scales of data.  

5.4. Evaluation of the Efficiencies 

The elapsed time of each method for each data set are recorded on Pentium (R) Dual-Core 

CPU 2.80 GHz processor and 32-bit operating system Windows ® computer during the runs 

(Table 14). Depending on the results, following conclusions can be stated: 

 Run times increases as sample size and scale increases. 

 As expected, it takes the bootstrap methods considerably longer times to run than 

MARS and CMARS.  

Table 5. Runtimes (in seconds) of Methods with respect to Size and Scale of Data Sets 

Scale 

Small Medium 

Sample 

Size 

 

 

Small 

MARS:  < 0.0800 sec.* 

 

MARS:  < 0.0800 sec.* 

 CMARS: < 4.4666 sec. CMARS:  < 19.5269 sec. 

BCMARS-1: < 1,595 sec. BCMARS-1: < 13,262 sec. 

BCMARS-2: < 1,578 sec. BCMARS-2: < 18,537 sec. 

BCMARS-3: < 1,599 sec. BCMARS-3: < 15,617 sec. 

 

 

Medium 

MARS: < 0.0840 sec.* MARS: < 0.0900 sec.* 

 CMARS: < 18.2008 sec. CMARS: < 21.6737 sec. 

BCMARS-1: < 15,958 sec. BCMARS-1: < 18,664 sec. 

BCMARS-2: < 7,076 sec. BCMARS-2: < 31,590 sec. 

BCMARS-3: < 8,374 sec. BCMARS-3: < 16,753  sec. 

*indicates better performance with respect to run times 

 Three bootstrap regression methods have almost the same efficiencies in small size 

and small scale data sets. Note that run times of these methods increases almost ten 

times as much as the scale increases from small to medium. 
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 Random-X and Wild bootstrapping have similar efficiencies in medium size small 

scale data sets; Fixed-X runs twice as much to those of Random-X and Wild 

bootstrapping, whose run times increase almost five times as much as the sample size 

increases. 

 Fixed-X and Wild bootstrapping have similar run times for medium size medium scale 

data sets while Random-X runs almost twice as much to that of Fixed-X and Wild 

bootstrapping.  

5.5. Evaluation of the Precisions of the Model Parameters 

In addition to performance measures of the models, the CIs and standard deviations of the 

parameters are calculated after bootstrapping. These values are compared with those values 

obtained from bootstrapping CMARS. The smaller the lengths of the CIs and the standard 

deviations, the more precise the parameter estimates are. 

According to the results, following conclusions can be drawn: 

In medium size and medium scale data: 

 The length of CIs is larger in Wild bootstrapping than the ones obtained by Fixed-

X Resampling. Thus, Fixed-X gives more precise parameter estimates. 

 The standard deviations obtained by bootstrapping (STD(BS)) are smaller for Wild 

bootstrapping method than for Fixed-X Resampling.  

 In general, both types of standard deviations are smaller than the ones obtained 

from CMARS.  

In small size and medium scale data set: 

 In fold 2, standard deviations of Wild bootstrapping are smaller compared to those 

of CMARS, while the STD (BS) are not. However, the lengths of CIs become 

narrower after bootstrapping. 

In medium size and small scale data set: 

 In general, the length of CIs of Random-X is smaller than CMARS. Thus, 

Random-X produces more precise parameter estimates. 

 Random-X Resampling produces narrower CIs than Fixed-X. So, parameter 

estimates of Random-X are more precise. 

 The standard deviations of parameters obtained by Random-X and Fixed-X are 

similar. 

In small size and small scale data set: 

 The lengths of CIs become narrower and standard deviations of the parameters 

become smaller after bootstrapping, thus, resulting in more precise parameter 

estimates. 

 STD(BS) values obtained for Fixed-X Resampling are smaller than ones obtained 

from Random-X. 

 

 

6. CONCLUSION AND FURTHER RESEARCH 
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In this study, three different bootstrap methods are applied to a nonparametric regression, 

called CMARS, which is an improved version of the backward step of the widely used 

method MARS. MARS has two-step algorithm to build a model: forward and backward. 

CMARS uses inputs obtained from the forward step of MARS, and then, by utilizing the CQP 

technique, it constructs the large model. Although CMARS overperforms MARS with respect 

to several criteria, it constructs models which are at least as complex as MARS (Weber et al., 

2011).  

In this study, it is aimed to reduce the complexity of CMARS models. To achieve this aim, 

bootstrapping regression methods, namely Fixed-X and Random-X Resampling, and Wild 

bootstrapping, are utilized by adopting an iterative approach to determine whether the 

parameters statistically contribute to the developed CMARS model or not. If there are any 

which do not contribute, they are removed from the model, and a new CMARS model is fitted 

to the data by only retaining the statistically significant parameters until none of them is found 

to be insignificant. The reason of using a computational method here is the lack of prior 

knowledge regarding the distributions of the model parameters.  

The performances of the methods are empirically evaluated and compared with respect to 

several criteria by using four data sets which are selected in such a way that they can represent 

the small and medium sample size and scale categories. The criteria include accuracy (with 

MAE, R
2
, PWI and PRESS measures), complexity (with the MSE measure), stability (by 

comparing the performances in training and test samples), robustness (by comparing the 

performances in different data sets), efficiency (using run times) and precision (by evaluating 

the length of CIs of parameters). All performance criteria are explained in Appendix A. In 

order to validate all models developed; three-fold CV approach is used. For this purpose, 

these data sets are divided into three parts (folds) and two of them are used for building 

(training) and the remaining one is used for testing.  

Depending on the comparisons presented in the previous section, Section 5, one may 

conclude the followings: 

 In general, BCMARS methods perform better than MARS and CMARS with respect 

to most of the measures, and also lead to development of robust models with respect to 

the same measures.  

 Either one of the BCMARS methods yields models which are less complex than that 

of MARS and CMARS. 

 In overall, Random-X Resampling or Wild bootstrapping produce more stable models 

with respect to most of the measures considered. 

 Fixed-X method performs the best in small size training data in terms of most 

measures. 

 Fixed-X also performs the best in medium size training data sets with respect to MSE 

and R
2
. 

 MARS and Random-X Resampling overperform in small and medium size test data 

sets, respectively. 

 Wild bootstrapping and Random-X methods are more stable in small and medium size 

test data sets, respectively. 

 Fixed-X is performing equally well on both scale of training data sets. 

 Random-X performs best in medium scale data while MARS and CMARS perform 

best in small scale data. 

 Random-X Resampling is more stable in medium scale data set. 
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 It is apparent that by decreasing the number of terms in the model by bootstrapping, 

the CIs become narrower compared to those of CMARS. Moreover, the standard 

errors of the parameters which obtained empirically decreases after bootstrapping. 

Thus, bootstrapping results in more precise parameter estimates. 

 The main drawback of bootstrapping is its computational effort. Since it is heavily 

dependent on computers, it takes significantly more time than the other methods, 

MARS and CMARS.  

In short, depending on the above conclusions, it may be suggested that Random-X 

Resampling method leads to more accurate and more precise and less complex models 

particularly for medium size and medium scale data. Nevertheless, it is the least efficient 

method among the others for this type of data set in terms of run time.  

Future studies are planned in several directions. First, BCMARS methods are going to be 

applied on different data sets with small to large size and scale. Then, Repeated Analysis of 

Variance (RANOVA) will be applied to test whether there is statistically significant 

difference between the performances of methods. Besides, replicated CV is going to be used 

while validating the models. Then, after well-documented, the written MATLAB code will be 

issued as on open source to make it available for interested researchers.   
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APPENDIX 

 

Nomencleature: 

iy is the response value for the thi observation, 

iŷ is the estimated response value for the thi observation, 

y is the value of the mean response, 

n  is the number of observations (sample size), 
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p is the number of terms (BFs) in the model, 

ŷ is the value of the mean of the estimated responses, 

2)( ys  is the sample variance of the observed response values, 

2)ˆ( ys is the sample variance of the estimated response values, 

iii yye ˆ is the residual for the thi  observation, 

ih is the leverage value of the thi  observation. It is obtained from the thi diagonal element of 

the hat matrix; .H  The hat matrix is defined with the following formula .)( 1 TT XXXXH  

Here, X  represents the design matrix and rank of it is .p  

Accuracy Measures 

Mean Absolute Error (MAE) 

It is defined as follows:  
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Small values are the better. 

The Coefficient of Determination (R
2
)  

This value shows how much variation in the response variable is explained by the model. It is 

defined by the following formula: 

 

2

1

2

12

ˆ

n

i

i

n

i

i

yy

yy

R .          (49) 

Higher values indicate better fit. 

Proportion of Residuals within Some User-Specified Range (PWI) 

PWI is the proportion of residuals within some user-specified range such as two or three 

sigma. In this study, three sigma coverage is considered. The greater the percentage is the 

better the performance. 

Prediction Error Residual Sum of Squares (PRESS) 

PRESS measures the predictive capability of the model. The formula used to calculate this 

measure is defined as:  
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Small values of PRESS, indicates a higher ability of prediction. 

Precision Measure 

Bootstrap Estimate of Standard Deviation 

The bootstrap estimate of standard error is calculated with the following formula (Martinez 

and Martinez, 2002).  
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where  
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and  
b*ˆ  is the bootstrap replication of .ˆ  

It measures the variation around the mean. The standard deviations of the parameters from 

ECDF are obtained.  

Complexity Measure 

Mean Square Error (MSE) 

In this study, the MSE is used to measure the model complexity. Larger values of the MSE 

indicate more complex models. The formula for the MSE is given below:
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Stability Measure 

The model is said to be stable if it performs well on both training and testing data sets. It is 

measured by the following formula (Osei-Bryson, 2004):
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TRCR and TECR  represents the performance measures obtained from training and testing 

samples. If the stability measure is close to one, it indicates higher stability.  

 

 


