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ABSTRACT
Applications of circular regression models are ubiquitous in many
disciplines, particularly in meteorology, biology and geology. In cir-
cular regression models, variable selection problem continues to
be a remarkable open question. In this paper, we address variable
selection in linear-circular regression models where uni-variate lin-
ear dependent and a mixed set of circular and linear independent
variables constitute the data set. We consider Bayesian lasso which
is a popular choice for variable selection in classical linear regres-
sionmodels.We show that Bayesian lasso in linear-circular regression
models is not able to produce robust inference as the coefficient
estimates are sensitive to the choice of hyper-prior setting for the
tuning parameter. To eradicate the problem, we propose a robus-
tified Bayesian lasso that is based on an empirical Bayes (EB) type
methodology to construct a hyper-prior for the tuning parameter
while using Gibbs Sampling. This hyper-prior construction is com-
putationally more feasible than the hyper-priors that are based on
correlationmeasures. We show in a comprehensive simulation study
that Bayesian lasso with EB-GS hyper-prior leads to a more robust
inference. Overall, the method offers an efficient Bayesian lasso for
variable selection in linear-circular regression while reducing model
complexity.
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1. Introduction

Circular variable is a variable that can be mapped onto a unit circle such as time of the
day and month of the year as well as angular or cardinal directions. Circular regression
models are used in many different fields such as meteorology, biology, geology, medicine,
and psychology when at least one of the variables of interest is circular. Circular regression
examples include air quality index on wind speed and direction, directional behavior of
sandhoppers depending on some environmental factors, the effect of tidal characteristics of
the fish’s environment on the spawning time [3,16,20]. The theoretical andmethodological
aspects of circular regression models are addressed in [6,10,16,18,30]. The focus of this
paper is linear-circular regressionmodels. Linear-circular regressionmodels are usedwhen
the response is a linear variable whereas at least one of the covariates is circular [16].
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As far as the regression models are concerned, one of the prevailing problems is vari-
able selection, both in linear and circular context. In the circular context, there have been
an array of variable/model selection methods from both frequentist and Bayesian per-
spectives [3,4,6,20,27,29,32] but it is still an active research area. We believe lasso [35]
that has been proven successful in the linear context would be beneficial in the circular
context. In this paper, we consider lasso in variable selection in linear-circular regression
models.

There are many advantages of lasso in linear regressionmodels. Primary advantages are
good prediction accuracy at the cost of negligible bias, satisfactorily parsimonious mod-
els, controlled risk of overfitting, increased model interpretability, computational benefits,
straightforward adaptation in wide range of models [34], and readily available Bayesian
interpretation [35]. In this paper, we provide an adaptation of Bayesian lasso for variable
selection in linear-circular regression models motivated by the performance of lasso in
linear case.We developed a new prior construction for the tuning parameter based on uni-
fication of notions of Empirical Bayes (EB) and Gibbs Sampling (GS) which we call EB-GS
prior. Rest of the paper is organized as follows. Section 2 presents an overview of the lasso
and Bayesian lasso in linear regression models. We devote Section 3 to tuning parameter
specification and its role in lasso. In this section we also introduce a new alternative EB
type approach for specifying hyper-hyper parameters of hyper-prior distribution on the
tuning parameter. Section 4 introduces the adaptation of Bayesian lasso in linear-circular
regression models and discusses some specific properties such as posterior consistency
and asymptotic normality. Section 5 presents extensive simulation studies for assessing
the sensitivity and the performance of the proposed method. In Section 6, the method is
applied to two datasets that are important in wildfire studies. Finally, Section 7 completes
the paper with some concluding remarks and some future works related to the proposed
method.

2. Review of the lasso

Consider the following linear regression model:

Y = Xβ + ε, (1)

whereYn×1 is a vector of linear response,Xn×(p+1) is amatrix of linear covariates, β(p+1)×1
is a vector of unknown regression coefficients and εn×1 is a vector of random error term.
Here, n and p denote the sample size and the number of linear covariates, respectively.
The most popular estimation method has been ordinary least squares (OLS) for model in
Equation (1). When we use the OLS estimates, two challenges may arise, (i) prediction
accuracy, (ii) interpretability [35]. If the purpose of modeling is prediction, we naturally
would like our model to accurately predict future data. Although the OLS estimates often
have low bias, they have large variance somehow leading to a loss in prediction accuracy.
Prediction accuracy can often be improved by shrinking the regression coefficients. In
this framework, ‘shrinkage’ refers to decreasing the magnitude of regression coefficients
towards zero. Shrinkage sacrifices some unbiasedness to reduce the variance of the pre-
dicted value and may improve the overall prediction as a result of this compromise. OLS
cannot distinguish variables with little or no influence. Practitioners would like to pick only
a subset of all variables that are assumed to be relevant. If shrinkage is sufficiently large,
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some of the regression coefficients are driven to zero, leading to a sparse model which can
be interpreted more easily.

Tibshirani [35] proposed a technique accomplishing this, called the lasso (least abso-
lute shrinkage and selection operator) for model in Equation (1). The lasso coefficients are
solutions to the l1 optimization problem and the lasso estimate β̂ lasso is defined by

β̂ lasso = argmin{||Y − Xβ||22} s.t. ||β||1 =
∑
j

|βj| ≤ t (2)

or equivalently [24]

β̂ lasso = argmin{||Y − Xβ||22 + λ||β||1}, (3)

where t ≥ 0 and λ ≥ 0 are tuning parameters, ||β||1 is the lasso penalty term. The tuning
parameter λ controls the strength of penalty which shrinks each βj towards zero. For λ

close to zero, the lasso estimate is close to the OLS whereas sufficiently large values of λ

will set some coefficients exactly equal to 0. So the lasso will perform variable selection. As
λ increases, more coefficients are set to zero (less variables are selected). To arrive at a final
lasso estimator of β , the lasso penalty parameter λ needs to be chosen.

The lasso penalty contains an absolute value, thus, the objective function is not differ-
entiable. Therefore, in general, the lasso solution lacks a closed form. This requires the
implementation of an optimization algorithm to find the minimizing solution. Since both
the objective function and the constraint are convex functions, the lasso estimate can be
solved by standard convex optimization techniques. Tibshirani [35] described some effi-
cient and stable algorithms for the solution of this problem and so the lasso of Tibshirani
has become a widely used alternative to OLS in regression problems.

The lasso has an alternative Bayesian interpretation. Tibshirani [35] stated that the lasso
estimates can be obtained by the mode of the conditional posterior distribution of the
regression coefficients in a Bayesian model in which each coefficient is assigned apriori
the same double exponential (DE) or Laplace densities. When a DE or Laplace prior with
location μ = 0 and scale 1

λ
is assumed for β , i.e.

π(βj|λ) = λ

2
e−λ|βj|, j = 1, . . . , p (4)

where π denotes the prior density, λ > 0, and p is the number of covariates, then the
joint posterior distribution of regression coefficients, β , is proportional to the following
quantity

f (β|X, σ 2, λ) ∝ exp
(

− 1
σ 2 ||Y − Xβ||22 + λ||β||1

)
. (5)

The equivalency between two objectives in Equation (3) and in Equation (5) can be seen
easily.
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In Bayesian interpretation of the lasso, the objective function is interpreted as the
negative log-likelihood function, the lasso penalty term is seen as the negative log-prior
distribution of regression coefficients and the lasso estimates are the global maxima of the
posterior distribution. In other words, Bayesian interpretation of the lasso is considered as
maximum aposteriori under double-exponential prior.

3. Specification of the tuning parameter

There is an extensive literature on tuning parameter specification. In the frequentist
framework, the methods can be divided into the following broad categories: (i) resam-
pling based procedures such as cross-validation, generalized cross-validation, modified
cross-validation and the bootstrap [13,35,38], (ii) information criterion-based approaches
such as AIC, BIC, and generalized information criterion [2,8,9,11,15,34,36,37], (iii) model
metrics-based methods such as the residual sum of squares or Mallows’s Cp-type selec-
tion criterion[7,15], (iv) an analytical unbiased estimate of risk (Stein’s unbiased risk
estimation) [35].

In the Bayesian framework in which uncertainty in the tuning parameter is accounted
for by assigning hyper-prior density apriori, the approaches include (i) an EB approach
through marginal maximum likelihood [25], ( ii) Bayes factor [21], (iii) selecting an
appropriate hyper-prior [14,19,21,22,25,28], (iv) information criterion-based approaches
such as DIC [17]. The focus of the current article is selecting an appropriate hyper-
prior for the tuning parameter. A suitable hyper-prior can be placed on λ or λ2. For
instance, Park and Casella [25] considered the class of gamma hyper-priors on λ2 which is
given by:

π(λ2) = δr

�(r)
(λ2)r−1 e−δλ2 , λ2 > 0, r > 0, δ > 0, (6)

where, r and δ are shape and rate parameters respectively. Since the choice of hyper-
prior distribution has effect on subsequent inference as shown in Section 5.1, choosing
an appropriate hyper-prior distribution for λ is crucial. Notice that the full conditional
distribution of λ2 depends on p, r,

∑p
j=1 τ 2j and δ where p is fixed and known, τ ′

j s are esti-
mated from the data during the analysis and hyper-hyper parameters, r and δ are set by
the analyst. There are currently two methods to set r and δ apriori. One of them is given
by Park and Casella [25] where r and δ are determined such that hyper-prior distribution
has a high probability near the MLE of λ and relatively flat otherwise. However finding
the MLE of λ is difficult as it is based on a computationally very intensive approach and
the rate of convergence heavily relies on the initial. In addition, configuration the flat-
ness depends on the subjective choice of the analyst for r and δ. Since the selection of
the tuning parameter or the hyper-hyper parameters (r and δ) controls the entire pro-
cedure, their selection is desired to be free of researcher’s subjective effect and effect of
initial values. The other method is based on correlation measures such as benchmark and
threshold correlations given by Lykou and Ntzoufras [21]. Their approach gives similar
inclusion probabilities for significant covariates to those of a non-informative prior (such as
Ga(0.01, 0.01)).
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Table 1. Algorithm for EB-GS method of prior
construction.

Step 1:
1 Assign a non-informative prior for r and δ

2 Implement the Gibbs sampler
3 Obtain posterior mode of r and δ (r̂ and δ̂)

Step 2:
1 Use r̂ and δ̂ to assign hyper-prior for λ (λ ∼ Ga(r̂, δ̂))
2 Implement the Gibbs sampler
3 Obtain posterior mean of parameter of interest (β , σ 2, λ)

3.1. An empirical Bayes type hyper-prior for λ

Desired properties of hyper-prior for λ are good mixing in MCMC samplers, identifiabil-
ity of model parameters, and robustness of posterior inference. Otherwise problems of
non-identifiability and of sensitivity arise in posterior inference. Prior elicitation based
on EB notion is previously shown to eradicate such problems with hyper-parameters in
linear-linear regression. Here we employ the notion of EB to construct hyper-prior for the
lasso tuning parameter λ. Our method is based on adopting gamma or Half-Cauchy type
prior for λ with paramaters estimated from the empirical data at hand via Gibbs Sampling
(GS). GS here approximates the maximum of the marginal likelihood which is otherwise
intractable.We call ourmethodEB-GS indicating EB approach led byGS and the prior con-
structed that way EB-GS prior. The steps of the method are given in Table 1 and explained
below in detail.

EB-GS prior is constructed in two distinct steps both of which require GS. Consider-
ing a gamma type hyper-prior for λ, namely Ga(r, δ), the first step is assigning a pair of
non-informative priors for r and δ, e.g.Ga(0.01, 0.01), running a Gibbs sampling, and esti-
mating using the modes of the Gibbs samples. Note that, under ergodicity, mode of the
Gibbs samples converges to the mode of the marginal posterior density and to the max-
imum of the marginal likelihood. Second step is employing the estimates resulted from
step 1 to construct the hyper-prior distribution of λ i.e. λ ∼ Ga(r̂, δ̂), where r̂ and δ̂ are
posterior modes of the posterior distributions of r and δ obtained in step 1, respectively.

4. Bayesian lasso in linear-circular regressionmodels

In this study, we focus on linear-circular regressionmodels and their cosine representation
as a popular choice of modeling [18]. Cosine model is linear in both the variables and
the unknown regression coefficients. Here we adapt our EB-GS method for this model for
robust variable selection.

4.1. Cosinemodel

Suppose one observes (yi, θi)ni=1, where yi ∈ (−∞,∞) and θi ∈ [0, 2π] are linear and cir-
cular measurements for i=1,. . . , n. For the regression of a linear random variable Y on a
circular variable θ , we use the model given by [18], that is

Yi = α + β cos(θi − μθ) + εi, i = 1, . . . , n (7)
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where, α and β are the intercept and slope parameters respectively, μθ denotes the mean
direction of θ , and εi is error term which follows a linear distribution with zero mean and
an unknown variance denoted by σ 2. We reparameterize the model in Equation (7) as
follows.

Yi = β0 + β1 cos θi + β2 sin θi + εi, i = 1, . . . , n. (8)

where β0 = α is intercept parameter. β1 = β cosμθ and β2 = β sinμθ are slope param-
eters. In this representation, there are two slope parameters for each circular covariate.
Note that all parameters are linear in the second representation of the model while the first
representation of model has a circular parameter μθ .

Parameters of the model in Equation (8) can be estimated by minimizing the following
sum of squared distances function Q(.) given by

Q(�) = argmin
n∑
i=1

(yi − β0 − β1 cos θi − β2 sin θi)
2 subject to

2∑
j=1

|βj| ≤ t. (9)

where, the parameter space is � = {β0,β1,β2}.
The model in Equation (8) can be extended as follows for p independent circular

covariates,

Yi = β0 +
p∑

k=1

{β1k cos θik + β2k sin θik} + εi, i = 1, . . . , n, k = 1, . . . , p (10)

where, β1k = βk cosμθk , β2k = βk sinμθk are slope parameters for kth circular covariate.
The parameters of the model in Equation (10) can be estimated by minimizing the

following sum of squared distances,

Q(�) = argmin
n∑

i=1
(yi − β0 −

p∑
k=1

{β1k cos θik + β2k sin θik})2 subject to
p∑

k=1

2∑
j=1

|βjk| ≤ t. (11)

where, the parameter space, � = {β0,β1k,β2k}k=1,...,p.

4.2. Adaptation of Bayesian lasso

Combining the model structure we give in Equation (10) with the alternative representa-
tion for DE of lasso given by [1,25], we have the following hierarchical structure

Y|β0,X,β , σ 2 ∼ N(β0 + Xβ , σ 2I),

β|τ 21 , . . . , τ 22p, σ 2 ∼ N(0, σ 2Dτ ), Dτ = diag(τ 21 , . . . , τ
2
2p),

σ 2 ∼ Inv − Ga(a, b),

τ 2j ∼ Exp(λ2/2), j = 1, . . . , 2p,

λ2 ∼ Ga(r, δ),

β0 ∼ f (β0). (12)

where X = (X1,X2, . . . ,X2p−1,X2p) is the vector of covariates with X1 = cos(θ1), X2 =
sin(θ1), . . . ,X2p−1 = cos(θp),X2p = sin(θp), β = (β1,β2, . . . ,β2p−1,β2p) is the vector of
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regression coefficients, with β1 = β11, β2 = β21,. . . , β2p−1 = β1p,β2p = β2p, f (β0) is the
prior distribution for β0 which can be selected as an independent, flat prior. Based on
this hierarchical model, a Gibbs sampler can be implemented with the following full
conditional distributions,

β0 ∼ N(ȳ, σ 2/n),

β ∼ N(A−1XTy, σ 2A−1), A = XTX + D−1
τ ,

σ 2 ∼ Inv − Ga((n − 1)/2 + p/2, ((y − β0 − Xβ)T(y−β0 −Xβ) +βTD−1
τ β)/2 + b),

1
τ 2j

∼ Inv − Gauss(

√
λ2σ 2

β2
j

, λ2),

λ2 ∼ Ga(p + r,
2p∑
j=1

τ 2j /2 + δ). (13)

We used posterior mean as Bayesian lasso estimates. MCMC performed without a conver-
gence problem and the convergence is achieved optimally fast.

Note that for the Bayesian lasso, our posterior density is steep since inverse Hessian
matrix, [−L̄′′(ω0)]−1, → 0 as n → ∞ where ω0 denotes the true value of parameter of
interest ω. In other words, the largest eigenvalue of n/V → 0 as n → ∞ where V is vari-
ance matrix. Notice that L̄′′(ω0) can be obtained easily for the normal distribution. Our
posterior density is also smooth since L̄′′(ω) is a continuous function of ω. Since these two
conditions are satisfied, posterior estimators for Bayesian lasso in linear-circular regres-
sionmodel have asymptotically multivariate normal distribution. They also have posterior
consistency property.

5. Simulation study

This section first investigates the sensitivity of the posterior results to standard λ hyper-
priors and EB-GS hyper-prior (Section 5.1). Then, it investigates the performance of the
proposed EB-GS method in parameter estimation and variable selection (Section 5.2). All
this is accomplished by orchestrating a comprehensive Monte Carlo (MC) study.

Our simulation scenarios mimic those in the original lasso paper [35]. Our design is
controlled for the sample size and the heterogeneity of the circular covariate data. In all
simulation settings, circular covariates are independently generated from the von Mises
(vM) distributions with circular mean 0 and various different concentration parameters,
κ = 2, 4, 6, 8, 10. Some circular distributions with small κ may require special statistical
treatment in the analysis, therefore, we also considered smaller values of concentration
parameter (κ = 0.5, 1, 1.5, 1.75, 1.99) in the simulation studies that investigates the perfor-
mance of the proposed EB-GS method. Linear response variables, Yi’s, are generated from
the model given in Section 4.1 with εi ∼ N(0, 9). The study is controlled for the sample
size using, n = 100, 250.
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The three simulation scenarios considered are as follows:

• Scenario I: β = (4, 3, 3, 1.5, 1.5, 0, 0, 0, 0, 2, 2), p = 5.
• Scenario II: β = (4, 0.85, 0.85, 0.85, 0.85, 0, 0, 0, 0, 0.85, 0.85), p = 5.
• Scenario III: β = (4, 3, . . . , 3︸ ︷︷ ︸

16

, 0, . . . , 0︸ ︷︷ ︸
16

), p = 16.

We considered a variety of hyper-prior distributions for tuning parameter λ including
non-informative, weakly informative and informative priors. Priors for the interceptβ0 and
error variance σ 2 are specified as β0 ∼ N(0, 100) and σ 2 ∼ Ga(0.001, 0.001). The data are
generated using rvonmises function in R language. In order to implement MCMC scheme,
OpenBUGS which is an open source software for Bayesian statistics is employed. R pro-
gramming language and OpenBUGS program are integrated to carry out all analyses in
this study. Trace plots and Brooks-Gelman-Rubin (BGR) statistics [33] are used to moni-
tor convergence as well as to determine warm-up period and number of MCMC samples
to be used for final posterior inference. Each scenario is repeated 500 times.

Performance in variable selection is measured by the average number of covariates that
are correctly included in the model. Of the covariates that are found significant, the ones
that were used in the true response data generating mechanism are considered correctly
included in the model. A covariate is deemed significant if either one of the Bayesian cred-
ible interval (CI) for coefficient of cosine or sine term excludes nullity. Specific definitions
and calculations of these measures are as follows;

• Average Correct Inclusion (ACI): Average number of covariates that are correctly
included in the model and is given by

ACI =
∑M

i=1 CIi
M

(14)

where M is the number of MC replications and CIi is the number of covariates that are
correctly included in the model in ith MC replication.

• Average False Exclusion (AFE): Average number of covariates that are excluded from
the model although its true effect is non-zero and is given by

AFE =
∑M

i=1 FEi
M

(15)

where FEi is the number of covariates that are falsely excluded from themodel in ith MC
replication.

• Correct Inclusion Ratio (CIR)): Ratio of replications where all covariates are correctly
included in the model to all replications and is given by

CIR =
∑M

i=1 CIIi
M

(16)

where CIIi is the indicator of correct inclusion for ith MC replication. CII can take two
different values for each replication. CIIi is 1 if all covariates are correctly included, 0
otherwise.
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Performance in parameter estimation is measured using relative bias (RB) and mean
squared error (MSE) that are given below,

RB = E(β̂) − β

β
,MSE = E[(β̂ − β)2] (17)

where, β is the true value and β̂ is its estimate.

5.1. Simulation study 1: sensitivity analyses

5.1.1. Sensitivity analysis for standard Bayesian lasso
We conducted a detailed sensitivity analysis to assess if and how the performance of the
posterior estimates in linear-circular regression models are affected by conventional hyper
prior settings for λ. One such prior is HC hyper-prior which is becoming increasingly pop-
ular in the Bayesian literature as a robust alternative [12,23,26,28]. Another one is gamma
hyper-prior which is proposed by Park and Casella [25] as a suitable hyper-prior for the
tuning parameter. Table 2 lists the hyper-priors considered in this study taking the account
for different degrees of informativeness.

Tables 3–6 give RB andMSE of coefficient estimates under various different hyper-prior
setting for λ. MSEs are presented in the parentheses in all tables. Accordingly, in general,
better coefficient estimation (lowRB andMSE) are associated withmore informative λ pri-
ors when gamma type prior distributions are used.WhenHC type priors are used, RBs and
MSEs are comparable. Comparing gamma and HC type priors, it is seen that the statistical
properties of the final estimates are similar. Overall, the simulation study shows that prior
setting for λ effects final parameter estimation in linear-circular regression particularly
when the tuning parameter has a gamma type hyper-prior.

Performance measures for variable selection are given in Tables 7–9. First of all, the true
behavior for variable selection is as follows. For scenarios 1 and 2, ACI should be 3, and for
scenario 3 it should be 8. AFE and CIR should be 0 and 1 respectively in all scenarios. In
general, more informative hyper-priors seem to lead to a clearer distinction between sig-
nificant and insignificant covariates rendering more qualified variable selection. However
this is not necessarily the case with less informative hyper-priors. Overall, performance of
Bayesian lasso in linear-circular regression is sensitive to hyper-prior choice for λ.

Table 2. Hyper-prior distributions
for the tuning parameter.

1. Ga(1,0.1)
2. Ga(0.1, 0.1)
3. Ga(0.01, 0.01)
4. Ga(0.001, 0.001)
5. HC(0, 1)
6. HC(0, 1.2)
7. HC(0, 1.5)
8. HC(0, 1.7)
9. HC(0, 2)
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Table 3. Relative Bias (MSE) for Scenario I.

n Coefficients Ga(0.001, 0.001) Ga(0.01, 0.01) Ga(0.1, 0.1) Ga(1, 0.1) HC(0, 1) HC(0, 1.2) HC(0, 1.5) HC(0, 1.7) HC(0, 2)

100 β0 0.36(5.49) 0.35(5.45) 0.31(5.23) 0.42(5.54) 0.33(5.35) 0.33(5.35) 0.35(5.32) 0.35(5.36) 0.37(5.42)
β1 −0.13(0.87) −0.13(0.86) −0.12(0.81) −0.15(0.89) −0.12(0.83) −0.13(0.84) −0.13(0.85) −0.13(0.85) −0.13(0.86)
β2 −0.07(0.33) −0.07(0.33) −0.06(0.31) −0.08(0.34) −0.07(0.32) −0.07(0.32) −0.07(0.32) −0.07(0.33) −0.07(0.33)
β3 −0.37(1.2) −0.36(1.2) −0.33(1.22) −0.41(1.15) −0.34(1.22) −0.34(1.21) −0.36(1.19) −0.36(1.20) −0.37(1.19)
β4 −0.19(0.44) −0.18(0.43) −0.17(0.42) −0.20(0.44) −0.17(0.43) −0.17(0.43) −0.18(0.43) −0.18(0.43) −0.18(0.43)
β5 NA(1.01) NA(1.03) NA(1.14) NA(0.76) NA(1.12) NA(1.08) NA(1.02) NA(1.00) NA(0.97)
β6 NA(0.32) NA(0.32) NA(0.34) NA(0.29) NA(0.33) NA(0.33) NA(0.32) NA(0.32) NA(0.32)
β7 −0.55(2.49) −0.54(2.50) −0.51(2.54) −0.62(2.42) −0.52(2.54) −0.53(2.52) −0.54(2.49) −0.55(2.48) −0.56(2.47)
β8 −0.25(0.94) −0.24(0.93) −0.22(0.9) −0.27(0.95) −0.23(0.91) −0.23(0.92) −0.24(0.92) −0.24(0.93) −0.25(0.93)
β9 NA(0.99) NA(1.00) NA(1.15) NA(0.63) NA(1.13) NA(1.07) NA(1.00) NA(0.96) NA(0.92)
β10 NA(0.54) NA(0.55) NA(0.59) NA(0.49) NA(0.58) NA(0.57) NA(0.56) NA(0.55) NA(0.54)

250 β0 0.27(3.96) 0.27(3.97) 0.24(3.92) 0.31(3.90) 0.25(4.04) 0.26(3.95) 0.26(3.92) 0.27(3.92) 0.27(3.94)
β1 −0.05(0.30) −0.05(0.29) −0.05(0.29) −0.06(0.30) −0.05(0.29) −0.05(0.29) −0.05(0.29) −0.05(0.29) −0.05(0.29)
β2 −0.02(0.10) −0.02(0.10) −0.02(0.10) −0.02(0.10) −0.02(0.10) −0.02(0.10) −0.02(0.10) −0.02(0.10) −0.02(0.10)
β3 −0.22(0.75) −0.22(0.75) −0.20(0.75) −0.25(0.74) −0.21(0.75) −0.21(0.75) −0.21(0.75) −0.22(0.75) −0.22(0.75)
β4 −0.09(0.19) −0.09(0.19) −0.08(0.19) −0.09(0.20) −0.08(0.19) −0.08(0.19) −0.08(0.19) −0.08(0.19) −0.09(0.19)
β5 NA(0.63) NA(0.63) NA(0.68) NA(0.54) NA(0.72) NA(0.66) NA(0.64) NA(0.63) NA(0.62)
β6 NA(0.17) NA(0.17) NA(0.18) NA(0.16) NA(0.18) NA(0.17) NA(0.17) NA(0.17) NA(0.17)
β7 −0.46(2.25) −0.46(2.25) −0.43(2.26) −0.51(2.21) −0.44(2.28) −0.44(2.26) −0.45(2.25) −0.45(2.24) −0.46(2.25)
β8 −0.10(0.37) −0.10(0.37) −0.09(0.36) −0.11(0.38) −0.09(0.36) −0.10(0.36) −0.10(0.37) −0.10(0.37) −0.10(0.37)
β9 NA(0.92) NA(0.92) NA(1.04) NA(0.70) NA(1.02) NA(0.97) NA(0.93) NA(0.92) NA(0.89)
β10 NA(0.25) NA(0.25) NA(0.26) NA(0.23) NA(0.26) NA(0.25) NA(0.25) NA(0.25) NA(0.25)

Note: NA: No results are available for these parameters.
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Table 4. Relative Bias (MSE) for Scenario II.

n Coefficients Ga(0.001, 0.001) Ga(0.01, 0.01) Ga(0.1, 0.1) Ga(1, 0.1) HC(0, 1) HC(0, 1.2) HC(0, 1.5) HC(0, 1.7) HC(0, 2)

100 β0 0.34(2.65) 0.31(2.44) 0.23(2.43) 0.28(2.26) 0.29(2.50) 0.30(2.50) 0.31(2.50) 0.31(2.50) 0.31(2.51)
β1 −0.48(0.39) −0.40(0.37) −0.28(0.38) −0.35(0.36) −0.40(0.38) −0.41(0.38) −0.42(0.38) −0.42(0.38) −0.43(0.38)
β2 −0.23(0.27) −0.14(0.25) −0.02(0.25) −0.07(0.24) −0.15(0.27) −0.15(0.26) −0.16(0.27) −0.17(0.26) −0.18(0.27)
β3 −0.64(0.65) −0.58(0.66) −0.44(0.80) −0.54(0.66) −0.56(0.70) −0.57(0.70) −0.58(0.68) −0.58(0.68) −0.59(0.67)
β4 −0.37(0.33) −0.28(0.31) −0.15(0.32) −0.22(0.30) −0.29(0.32) −0.29(0.32) −0.30(0.32) −0.31(0.32) −0.32(0.32)
β5 NA(0.22) NA(0.29) NA(0.60) NA(0.32) NA(0.36) NA(0.34) NA(0.32) NA(0.30) NA(0.28)
β6 NA(0.15) NA(0.20) NA(0.31) NA(0.25) NA(0.21) NA(0.20) NA(0.20) NA(0.19) NA(0.19)
β7 −0.85(0.68) −0.82(0.69) −0.73(0.83) −0.81(0.68) −0.8(0.73) −0.81(0.72) −0.82(0.71) −0.82(0.69) −0.83(0.69)
β8 −0.51(0.43) −0.42(0.41) −0.28(0.43) −0.36(0.40) −0.42(0.42) −0.43(0.42) −0.44(0.42) −0.44(0.42) −0.45(0.42)
β9 NA(0.11) NA(0.15) NA(0.37) NA(0.17) NA(0.20) NA(0.19) NA(0.17) NA(0.16) NA(0.15)
β10 NA(0.18) NA(0.23) NA(0.36) NA(0.28) NA(0.25) NA(0.25) NA(0.23) NA(0.23) NA(0.22)

250 β0 0.30(1.89) 0.27(1.76) 0.2(1.78) 0.24(1.65) 0.27(1.80) 0.27(1.81) 0.27(1.77) 0.28(1.81) 0.28(1.80)
β1 −0.31(0.22) −0.26(0.21) −0.17(0.20) −0.21(0.20) −0.26(0.21) −0.27(0.22) −0.27(0.22) −0.27(0.22) −0.28(0.22)
β2 −0.17(0.12) −0.12(0.10) −0.05(0.09) −0.08(0.10) −0.13(0.11) −0.13(0.11) −0.13(0.11) −0.14(0.11) −0.14(0.11)
β3 −0.58(0.45) −0.53(0.43) −0.40(0.43) −0.47(0.42) −0.52(0.44) −0.52(0.44) −0.52(0.44) −0.53(0.44) −0.53(0.44)
β4 −0.22(0.19) −0.17(0.18) −0.08(0.17) −0.11(0.17) −0.17(0.18) −0.17(0.19) −0.17(0.19) −0.18(0.19) −0.18(0.19)
β5 NA(0.15) NA(0.20) NA(0.41) NA(0.27) NA(0.23) NA(0.22) NA(0.21) NA(0.20) NA(0.19)
β6 NA(0.10) NA(0.11) NA(0.14) NA(0.13) NA(0.11) NA(0.11) NA(0.11) NA(0.11) NA(0.11)
β7 −0.90(0.77) −0.87(0.80) −0.78(0.97) −0.83(0.81) −0.87(0.85) −0.87(0.84) −0.87(0.82) −0.88(0.82) −0.88(0.80)
β8 −0.49(0.35) −0.45(0.33) −0.36(0.33) −0.40(0.32) −0.44(0.34) −0.44(0.34) −0.45(0.34) −0.45(0.34) −0.46(0.34)
β9 NA(0.09) NA(0.12) NA(0.30) NA(0.17) NA(0.14) NA(0.14) NA(0.13) NA(0.12) NA(0.12)
β10 NA(0.16) NA(0.19) NA(0.26) NA(0.22) NA(0.20) NA(0.19) NA(0.19) NA(0.19) NA(0.18)

Note: NA: No results are available for these parameters.
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Table 5. Relative Bias (MSE) for Scenario III, n = 100.

Coefficients Ga(0.001, 0.001) Ga(0.01, 0.01) Ga(0.1, 0.1) Ga(1, 0.1) HC(0, 1) HC(0, 1.2) HC(0, 1.5) HC(0, 1.7) HC(0, 2)

β0 1.71(58.55) 1.7(58) 1.69(57.32) 1.83(64.13) 1.67(56.50) 1.69(56.96) 1.71(58.18) 1.72(58.54) 1.73(58.84)
β1 −0.13(0.92) −0.13(0.92) −0.13(0.91) −0.14(0.93) −0.13(0.91) −0.13(0.91) −0.13(0.91) −0.13(0.91) −0.13(0.92)
β2 −0.08(0.44) −0.08(0.44) −0.08(0.44) −0.08(0.45) −0.08(0.44) −0.08(0.44) −0.08(0.44) −0.08(0.44) −0.08(0.44)
β3 −0.39(2.88) −0.39(2.88) −0.38(2.87) −0.41(2.95) −0.38(2.86) −0.38(2.86) −0.39(2.88) −0.39(2.88) −0.39(2.88)
β4 −0.09(0.67) −0.09(0.67) −0.09(0.66) −0.10(0.68) −0.09(0.66) −0.09(0.66) −0.09(0.66) −0.09(0.67) −0.09(0.67)
β5 −0.48(4.08) −0.48(4.07) −0.48(4.06) −0.51(4.11) −0.47(4.08) −0.48(4.08) −0.48(4.08) −0.48(4.09) −0.49(4.09)
β6 −0.17(1.18) −0.17(1.18) −0.16(1.18) −0.18(1.21) −0.16(1.17) −0.16(1.17) −0.16(1.18) −0.17(1.18) −0.17(1.18)
β7 −0.58(4.75) −0.58(4.76) −0.57(4.76) −0.60(4.78) −0.57(4.75) −0.57(4.75) −0.57(4.76) −0.58(4.75) −0.58(4.76)
β8 −0.21(1.43) −0.21(1.43) −0.21(1.42) −0.23(1.47) −0.21(1.41) −0.21(1.41) −0.21(1.42) −0.21(1.42) −0.21(1.43)
β9 −0.13(0.88) −0.13(0.88) −0.13(0.88) −0.14(0.90) −0.12(0.87) −0.13(0.87) −0.13(0.88) −0.13(0.88) −0.13(0.88)
β10 −0.08(0.37) −0.08(0.37) −0.08(0.37) −0.09(0.37) −0.08(0.36) −0.08(0.36) −0.08(0.37) −0.08(0.37) −0.08(0.37)
β11 −0.35(2.73) −0.34(2.72) −0.34(2.72) −0.37(2.77) −0.34(2.71) −0.34(2.71) −0.34(2.72) −0.35(2.73) −0.35(2.73)
β12 −0.11(0.69) −0.11(0.69) −0.11(0.68) −0.12(0.70) −0.11(0.68) −0.11(0.68) −0.11(0.68) −0.11(0.68) −0.11(0.69)
β13 −0.52(4.16) −0.52(4.16) −0.52(4.15) −0.54(4.20) −0.51(4.14) −0.51(4.14) −0.52(4.16) −0.52(4.17) −0.52(4.15)
β14 −0.13(0.97) −0.12(0.96) −0.12(0.96) −0.14(0.98) −0.12(0.95) −0.12(0.96) −0.12(0.96) −0.12(0.96) −0.13(0.96)
β15 −0.60(4.66) −0.60(4.64) −0.60(4.63) −0.63(4.74) −0.60(4.63) −0.60(4.63) −0.60(4.65) −0.60(4.66) −0.61(4.65)
β16 −0.18(1.19) −0.18(1.18) −0.18(1.18) −0.19(1.22) −0.18(1.17) −0.18(1.17) −0.18(1.18) −0.18(1.18) −0.18(1.19)
β17 NA(0.29) NA(0.29) NA(0.30) NA(0.28) NA(0.30) NA(0.30) NA(0.30) NA(0.29) NA(0.29)
β18 NA(0.22) NA(0.22) NA(0.22) NA(0.22) NA(0.23) NA(0.23) NA(0.22) NA(0.22) NA(0.22)
β19 NA(0.89) NA(0.89) NA(0.90) NA(0.80) NA(0.92) NA(0.91) NA(0.90) NA(0.89) NA(0.88)
β20 NA(0.36) NA(0.37) NA(0.37) NA(0.35) NA(0.37) NA(0.37) NA(0.37) NA(0.36) NA(0.36)
β21 NA(0.96) NA(0.98) NA(0.99) NA(0.85) NA(1.01) NA(1.00) NA(0.97) NA(0.97) NA(0.95)
β22 NA(0.41) NA(0.41) NA(0.41) NA(0.39) NA(0.41) NA(0.41) NA(0.41) NA(0.41) NA(0.41)
β23 NA(1.20) NA(1.20) NA(1.23) NA(1.04) NA(1.27) NA(1.25) NA(1.21) NA(1.21) NA(1.18)
β24 NA(0.53) NA(0.54) NA(0.54) NA(0.51) NA(0.55) NA(0.54) NA(0.54) NA(0.54) NA(0.53)
β25 NA(0.40) NA(0.40) NA(0.40) NA(0.39) NA(0.41) NA(0.41) NA(0.40) NA(0.40) NA(0.40)
β26 NA(0.21) NA(0.21) NA(0.21) NA(0.20) NA(0.21) NA(0.21) NA(0.21) NA(0.21) NA(0.21)
β27 NA(0.93) NA(0.94) NA(0.94) NA(0.86) NA(0.96) NA(0.95) NA(0.94) NA(0.93) NA(0.92)
β28 NA(0.34) NA(0.34) NA(0.34) NA(0.32) NA(0.34) NA(0.34) NA(0.34) NA(0.34) NA(0.34)
β29 NA(1.19) NA(1.20) NA(1.22) NA(1.05) NA(1.25) NA(1.23) NA(1.21) NA(1.20) NA(1.18)
β30 NA(0.38) NA(0.38) NA(0.39) NA(0.37) NA(0.39) NA(0.39) NA(0.39) NA(0.39) NA(0.38)
β31 NA(1.06) NA(1.07) NA(1.08) NA(0.91) NA(1.11) NA(1.10) NA(1.06) NA(1.05) NA(1.05)
β32 NA(0.55) NA(0.55) NA(0.56) NA(0.52) NA(0.56) NA(0.56) NA(0.55) NA(0.55) NA(0.55)

Note: NA: No results are available for these parameters.



JO
U
RN

A
L
O
F
A
PPLIED

STA
TISTIC

S
13

Table 6. Relative Bias (MSE) for Scenario III, n = 250.

Coefficients Ga(0.001, 0.001) Ga(0.01, 0.01) Ga(0.1, 0.1) Ga(1, 0.1) HC(0, 1) HC(0, 1.2) HC(0, 1.5) HC(0, 1.7) HC(0, 2)

β0 1.29(35.31) 1.31(35.87) 1.27(34.22) 1.35(38.16) 1.27(34.46) 1.29(35.2) 1.29(35.18) 1.31(35.73) 1.3(35.55)
β1 −0.04(0.27) −0.04(0.27) −0.04(0.26) −0.04(0.27) −0.04(0.26) −0.04(0.27) −0.04(0.27) −0.04(0.27) −0.04(0.27)
β2 −0.03(0.09) −0.03(0.09) −0.03(0.09) −0.03(0.09) −0.03(0.09) −0.03(0.09) −0.03(0.09) −0.03(0.09) −0.03(0.09)
β3 −0.10(0.93) −0.10(0.94) −0.09(0.92) −0.11(0.95) −0.09(0.93) −0.10(0.93) −0.10(0.93) −0.10(0.94) −0.10(0.93)
β4 −0.05(0.16) −0.05(0.16) −0.05(0.16) −0.05(0.16) −0.05(0.16) −0.05(0.16) −0.05(0.16) −0.05(0.16) −0.05(0.16)
β5 −0.40(2.56) −0.40(2.58) −0.40(2.54) −0.41(2.62) −0.40(2.52) −0.40(2.55) −0.40(2.56) −0.40(2.57) −0.40(2.57)
β6 −0.07(0.23) −0.07(0.23) −0.07(0.23) −0.07(0.23) −0.07(0.23) −0.07(0.23) −0.07(0.23) −0.07(0.23) −0.07(0.23)
β7 −0.47(3.71) −0.48(3.80) −0.47(3.76) −0.49(3.84) −0.47(3.81) −0.47(3.75) −0.47(3.78) −0.48(3.79) −0.47(3.80)
β8 −0.07(0.43) −0.07(0.43) −0.06(0.43) −0.07(0.43) −0.06(0.42) −0.06(0.43) −0.06(0.43) −0.07(0.43) −0.07(0.43)
β9 −0.05(0.21) −0.05(0.21) −0.05(0.21) −0.06(0.21) −0.05(0.21) −0.05(0.21) −0.05(0.21) −0.05(0.21) −0.05(0.21)
β10 −0.02(0.11) −0.02(0.11) −0.02(0.11) −0.02(0.11) −0.02(0.11) −0.02(0.11) −0.02(0.11) −0.02(0.11) −0.02(0.11)
β11 −0.18(1.59) −0.19(1.62) −0.18(1.60) −0.19(1.62) −0.18(1.60) −0.18(1.61) −0.18(1.61) −0.18(1.6) −0.19(1.61)
β12 −0.07(0.25) −0.07(0.25) −0.07(0.25) −0.07(0.25) −0.07(0.25) −0.07(0.25) −0.07(0.25) −0.07(0.25) −0.07(0.25)
β13 −0.38(2.39) −0.38(2.38) −0.38(2.36) −0.40(2.47) −0.38(2.37) −0.38(2.38) −0.38(2.38) −0.39(2.39) −0.39(2.42)
β14 −0.08(0.27) −0.08(0.27) −0.08(0.27) −0.08(0.27) −0.08(0.27) −0.08(0.27) −0.08(0.27) −0.08(0.27) −0.08(0.27)
β15 −0.52(3.63) −0.53(3.64) −0.51(3.60) −0.54(3.71) −0.51(3.62) −0.52(3.61) −0.52(3.64) −0.52(3.67) −0.52(3.64)
β16 −0.08(0.34) −0.08(0.34) −0.08(0.34) −0.09(0.34) −0.08(0.34) −0.08(0.34) −0.08(0.34) −0.08(0.34) −0.08(0.34)
β17 NA(0.17) NA(0.17) NA(0.17) NA(0.16) NA(0.17) NA(0.17) NA(0.17) NA(0.17) NA(0.17)
β18 NA(0.13) NA(0.13) NA(0.13) NA(0.13) NA(0.13) NA(0.13) NA(0.13) NA(0.13) NA(0.13)
β19 NA(0.50) NA(0.50) NA(0.51) NA(0.49) NA(0.51) NA(0.51) NA(0.51) NA(0.51) NA(0.49)
β20 NA(0.10) NA(0.10) NA(0.10) NA(0.10) NA(0.10) NA(0.10) NA(0.10) NA(0.10) NA(0.10)
β21 NA(1.13) NA(1.12) NA(1.16) NA(1.06) NA(1.14) NA(1.15) NA(1.15) NA(1.12) NA(1.11)
β22 NA(0.12) NA(0.12) NA(0.12) NA(0.12) NA(0.12) NA(0.12) NA(0.12) NA(0.12) NA(0.12)
β23 NA(0.46) NA(0.46) NA(0.46) NA(0.40) NA(0.47) NA(0.46) NA(0.46) NA(0.45) NA(0.45)
β24 NA(0.26) NA(0.26) NA(0.26) NA(0.26) NA(0.26) NA(0.26) NA(0.26) NA(0.26) NA(0.26)
β25 NA(0.24) NA(0.24) NA(0.24) NA(0.23) NA(0.24) NA(0.24) NA(0.24) NA(0.24) NA(0.24)
β26 NA(0.10) NA(0.10) NA(0.10) NA(0.10) NA(0.10) NA(0.10) NA(0.10) NA(0.10) NA(0.10)
β27 NA(0.54) NA(0.54) NA(0.55) NA(0.52) NA(0.55) NA(0.55) NA(0.54) NA(0.54) NA(0.54)
β28 NA(0.09) NA(0.09) NA(0.09) NA(0.09) NA(0.09) NA(0.09) NA(0.09) NA(0.09) NA(0.09)
β29 NA(0.88) NA(0.91) NA(0.92) NA(0.82) NA(0.92) NA(0.91) NA(0.9) NA(0.88) NA(0.89)
β30 NA(0.22) NA(0.22) NA(0.22) NA(0.22) NA(0.22) NA(0.22) NA(0.22) NA(0.22) NA(0.22)
β31 NA(0.78) NA(0.79) NA(0.82) NA(0.71) NA(0.83) NA(0.83) NA(0.79) NA(0.78) NA(0.77)
β32 NA(0.14) NA(0.14) NA(0.14) NA(0.14) NA(0.14) NA(0.14) NA(0.14) NA(0.14) NA(0.14)

Note: NA: No results are available for these parameters.
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Table 7. Performances in variable selection under Scenario I.

Ga(0.001, Ga(0.01, Ga(0.1,
n Measures 0.001) 0.01) 0.1) Ga(1, 0.1) HC(0, 1) HC(0, 1.2) HC(0, 1.5) HC(0, 1.7) HC(0, 2)

100 ACI 1.832 1.840 1.890 1.806 1.862 1.858 1.850 1.850 1.846
AFE 1.168 1.160 1.110 1.194 1.138 1.142 1.150 1.150 1.154
CIR 0.180 0.176 0.196 0.162 0.186 0.182 0.178 0.178 0.178

250 ACI 2.822 2.831 2.840 2.817 2.836 2.840 2.831 2.836 2.836
AFE 0.178 0.169 0.160 0.183 0.164 0.160 0.169 0.164 0.164
CIR 0.850 0.850 0.850 0.845 0.850 0.850 0.850 0.850 0.850

Note: True values are ACI=3, AFE=0, CIR=1.

Table 8. Performances in variable selection under Scenario II.

Ga(0.001, Ga(0.01, Ga(0.1,
n Measures 0.001) 0.01) 0.1) Ga(1, 0.1) HC(0, 1) HC(0, 1.2) HC(0, 1.5) HC(0, 1.7) HC(0, 2)

100 ACI 0.351 0.471 0.672 0.562 0.455 0.451 0.422 0.422 0.406
AFE 2.649 2.529 2.328 2.438 2.545 2.549 2.578 2.578 2.594
CIR 0.006 0.006 0.013 0.003 0.010 0.010 0.010 0.006 0.006

250 ACI 1.082 1.233 1.397 1.356 1.205 1.219 1.219 1.219 1.178
AFE 1.918 1.767 1.603 1.644 1.795 1.781 1.781 1.781 1.822
CIR 0.027 0.027 0.041 0.027 0.027 0.027 0.027 0.027 0.027

Note: True values are ACI=3, AFE=0, CIR=1

Table 9. Performances in variable selection under Scenario III.

Ga(0.001, Ga(0.01, Ga(0.1,
n Measures 0.001) 0.01) 0.1) Ga(1, 0.1) HC(0, 1) HC(0, 1.2) HC(0, 1.5) HC(0, 1.7) HC(0, 2)

100 ACI 6.924 6.927 6.948 6.863 6.966 6.957 6.951 6.933 6.912
AFE 1.076 1.073 1.052 1.137 1.034 1.043 1.049 1.067 1.088
CIR 0.357 0.351 0.366 0.320 0.360 0.360 0.357 0.354 0.341

250 ACI 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000
AFE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CIR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Note: True values are ACI=8, AFE=0, CIR=1

5.1.2. Sensitivity analysis for EB-GS hyper-prior for λ
In this part, we investigate sensitivity of EB-GS based Bayesian lasso results to hyper-hyper
prior settings assumed for r and δ parameters. Since simulations for sensitivity analy-
sis takes too long time, this sensitivity analysis is made by considering just Scenario I.
Moreover, we consider that the effects of the coefficients in this scenario can be used to
measure the sensitivity of the EB-GS method, in general. The hyper-hyper priors taking
the account for different degrees of non-informativeness are as follows: Ga(0.01, 0.01) and
Ga(0.1, 0.01).

Table 10 gives RB andMSE of coefficient estimates under various different hyper-hyper
prior setting for r and δ. Accordingly, RB and MSE of coefficient posterior estimates are
much less sensitive to the base setting of EB-GS hyper-prior with moderate sample size
such as n = 250. Table 11 present the performance measures for variable selection. As the
sample size increases, all measures get closer to each other. Overall, EB-GS type hyper-
prior in Bayesian lasso for linear-circular regression is not sensitive to hyper-hyper prior
choice for r and δ, especially for moderate sample size.
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Table 10. Relative Bias (MSE) for Scenario I.

n 100 250

Coefficients Ga(0.01,0.01) Ga(0.1,0.01) Ga(0.01,0.01) Ga(0.1,0.01)

β0 0.42(6.54) 0.40(8.23) 0.28(4.27) 0.24(4.94)
β1 −0.15(0.86) −0.15(0.96) −0.06(0.27) −0.06(0.28)
β2 −0.04(0.30) −0.05(0.34) −0.03(0.12) −0.03(0.12)
β3 −0.43(1.25) −0.40(1.46) −0.19(0.84) −0.17(0.91)
β4 −0.13(0.43) −0.14(0.47) −0.09(0.20) −0.09(0.20)
β5 NA(1.34) NA(1.73) NA(0.67) NA(0.83)
β6 NA(0.39) NA(0.40) NA(0.17) NA(0.17)
β7 −0.64(2.89) −0.60(3.38) −0.42(2.42) −0.40(2.53)
β8 −0.18(0.83) −0.18(0.91) −0.08(0.36) −0.08(0.38)
β9 NA(1.21) NA(1.91) NA(0.99) NA(1.25)
β10 NA(0.51) NA(0.54) NA(0.26) NA(0.28)

Note: NA: No results are available for these parameters.

Table 11. Performances in variable selection under Scenario I.

n 100 250

Coefficients Ga(0.01,0.01) Ga(0.1,0.01) Ga(0.01,0.01) Ga(0.1,0.01)

ACI 1.959 1.962 2.841 2.833
AFE 1.041 1.038 0.159 0.167
CIR 0.254 0.264 0.853 0.841

5.2. Simulation study 2: performance of EB-GS

In this section, we proceed with comparisons of performance of EB-GS with hyper-prior
distributions used in the previous section. Overall, there are 3 hyper-prior distributions
examined per each sample size; (i.) Ga(r̂, δ̂), (ii.) Ga(0.1, 0.1) and (iii.) HC(0, 1). Note that
Ga(0.1, 0.1) and HC(0.1) outperformed the others as seen in Section 5.1 and thus EB-
GS is compared against those. In this simulation study, hyper-hyper priors for r and δ are
specified as Ga(0.01, 0.01). All other details are the same as the Section 5.

In Ga(r̂, δ̂), r̂ and δ̂ are posterior modes that are obtained by using proposed approach
presented in Section 3.1.

Table 12. Relative Bias (MSE) for Scenario I (When κ ≥ 2).

n 100 250

Coefficients Ga(0.1, 0.1) Ga(r̂, δ̂) HC(0, 1) Ga(0.1, 0.1) Ga(r̂, δ̂) HC(0, 1)

β0 0.36(6.05) 0.35(6.01) 0.39(6.14) 0.31(5.11) 0.30(5.07) 0.32(5.08)
β1 −0.12(0.78) −0.11(0.76) −0.13(0.81) −0.07(0.29) −0.06(0.28) −0.07(0.29)
β2 −0.05(0.33) −0.05(0.32) −0.05(0.34) −0.03(0.13) −0.03(0.13) −0.03(0.13)
β3 −0.34(1.50) −0.34(1.50) −0.37(1.47) −0.26(0.88) −0.26(0.87) −0.27(0.87)
β4 −0.18(0.49) −0.17(0.49) −0.19(0.50) −0.08(0.21) −0.08(0.21) −0.09(0.21)
β5 NA(1.33) NA(1.37) NA(1.20) NA(0.93) NA(0.94) NA(0.88)
β6 NA(0.44) NA(0.44) NA(0.42) NA(0.17) NA(0.17) NA(0.16)
β7 −0.58(2.82) −0.57(2.83) −0.60(2.79) −0.49(2.25) −0.49(2.23) −0.52(2.24)
β8 −0.23(0.88) −0.23(0.87) −0.25(0.90) −0.10(0.37) −0.10(0.37) −0.11(0.38)
β9 NA(1.21) NA(1.24) NA(1.06) NA(1.08) NA(1.09) NA(0.97)
β10 NA(0.48) NA(0.49) NA(0.45) NA(0.29) NA(0.29) NA(0.28)

Note: NA: No results are available for these parameters.
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5.2.1. Results in terms of parameter estimations
In order to investigate the performance of the Bayesian lasso with different hyper-prior
distributions for the tuning parameter in terms of parameter estimations, RB andMSE are
employed. Tables 12–17 show RBs and MSEs for this simulation study.

Table 13. Relative Bias (MSE) for Scenario II (When κ ≥ 2).

n 100 250

Coefficients Ga(0.1, 0.1) Ga(r̂, δ̂) HC(0, 1) Ga(0.1, 0.1) Ga(r̂, δ̂) HC(0, 1)

β0 0.27(2.56) 0.24(2.46) 0.33(2.73) 0.23(2.15) 0.22(2.26) 0.28(2.32)
β1 −0.29(0.40) −0.26(0.42) −0.42(0.40) −0.20(0.19) −0.20(0.20) −0.30(0.22)
β2 −0.24(0.23) −0.22(0.23) −0.35(0.27) −0.11(0.10) −0.11(0.10) −0.18(0.12)
β3 −0.64(0.72) −0.59(0.80) −0.71(0.69) −0.41(0.55) −0.39(0.56) −0.51(0.54)
β4 −0.30(0.32) −0.27(0.33) −0.42(0.35) −0.17(0.16) −0.16(0.16) −0.26(0.19)
β5 NA(0.36) NA(0.47) NA(0.25) NA(0.34) NA(0.37) NA(0.23)
β6 NA(0.19) NA(0.21) NA(0.13) NA(0.14) NA(0.14) NA(0.11)
β7 −0.75(0.89) −0.71(0.80) −0.82(0.72) −0.66(0.71) −0.63(0.79) −0.74(0.68)
β8 −0.43(0.48) −0.40(0.50) −0.55(0.48) −0.26(0.25) −0.25(0.26) −0.36(0.28)
β9 NA(0.34) NA(0.34) NA(0.17) NA(0.25) NA(0.36) NA(0.18)
β10 NA(0.33) NA(0.38) NA(0.23) NA(0.19) NA(0.20) NA(0.14)

Note: NA: No results are available for these parameters.

Table 14. Relative Bias (MSE) for Scenario III (When κ ≥ 2).

n 100 250

Coefficients Ga(0.1, 0.1) Ga(r̂, δ̂) HC(0, 1) Ga(0.1, 0.1) Ga(r̂, δ̂) HC(0, 1)

β0 1.74(59.04) 1.69(56.02) 1.7(56.77) 1.25(35.03) 1.23(34.04) 1.24(34.44)
β1 −0.13(0.87) −0.13(0.86) −0.13(0.86) −0.05(0.25) −0.05(0.25) −0.05(0.25)
β2 −0.08(0.42) −0.08(0.42) −0.08(0.42) −0.02(0.12) −0.02(0.12) −0.02(0.12)
β3 −0.37(2.86) −0.36(2.83) −0.36(2.84) −0.21(1.37) −0.20(1.36) −0.21(1.36)
β4 −0.10(0.64) −0.10(0.63) −0.10(0.63) −0.03(0.17) −0.03(0.17) −0.03(0.17)
β5 −0.49(4.09) −0.48(4.06) −0.48(4.09) −0.31(2.55) −0.30(2.53) −0.31(2.54)
β6 −0.17(0.93) −0.16(0.92) −0.16(0.92) −0.05(0.30) −0.05(0.29) −0.05(0.29)
β7 −0.58(4.50) −0.57(4.46) −0.57(4.48) −0.43(3.64) −0.42(3.62) −0.42(3.62)
β8 −0.20(1.31) −0.19(1.29) −0.19(1.29) −0.06(0.38) −0.06(0.38) −0.06(0.38)
β9 −0.13(0.81) −0.13(0.80) −0.13(0.80) −0.06(0.29) −0.06(0.29) −0.06(0.29)
β10 −0.07(0.37) −0.07(0.37) −0.07(0.37) −0.02(0.12) −0.02(0.12) −0.02(0.12)
β11 −0.32(2.71) −0.31(2.69) −0.31(2.70) −0.19(1.34) −0.18(1.33) −0.19(1.33)
β12 −0.13(0.68) −0.13(0.67) −0.13(0.67) −0.04(0.19) −0.04(0.19) −0.04(0.19)
β13 −0.48(3.98) −0.47(3.95) −0.47(3.96) −0.34(2.49) −0.33(2.46) −0.33(2.47)
β14 −0.16(1.03) −0.16(1.02) −0.16(1.02) −0.06(0.30) −0.06(0.30) −0.06(0.30)
β15 −0.61(4.95) −0.60(4.92) −0.60(4.92) −0.49(3.69) −0.48(3.67) −0.49(3.67)
β16 −0.19(1.30) −0.19(1.28) −0.19(1.28) −0.09(0.43) −0.09(0.42) −0.09(0.42)
β17 NA(0.37) NA(0.38) NA(0.38) NA(0.17) NA(0.17) NA(0.17)
β18 NA(0.21) NA(0.21) NA(0.21) NA(0.09) NA(0.09) NA(0.09)
β19 NA(0.94) NA(0.98) NA(0.98) NA(0.53) NA(0.53) NA(0.54)
β20 NA(0.31) NA(0.32) NA(0.32) NA(0.14) NA(0.14) NA(0.14)
β21 NA(1.03) NA(1.09) NA(1.09) NA(0.78) NA(0.80) NA(0.80)
β22 NA(0.40) NA(0.41) NA(0.41) NA(0.17) NA(0.17) NA(0.17)
β23 NA(1.25) NA(1.31) NA(1.31) NA(1.06) NA(1.09) NA(1.09)
β24 NA(0.45) NA(0.46) NA(0.46) NA(0.22) NA(0.22) NA(0.22)
β25 NA(0.43) NA(0.44) NA(0.44) NA(0.17) NA(0.17) NA(0.17)
β26 NA(0.22) NA(0.23) NA(0.23) NA(0.09) NA(0.09) NA(0.09)
β27 NA(0.85) NA(0.88) NA(0.88) NA(0.48) NA(0.49) NA(0.49)
β28 NA(0.30) NA(0.30) NA(0.30) NA(0.14) NA(0.14) NA(0.14)
β29 NA(1.24) NA(1.29) NA(1.28) NA(0.78) NA(0.80) NA(0.80)
β30 NA(0.40) NA(0.40) NA(0.40) NA(0.18) NA(0.19) NA(0.19)
β31 NA(1.21) NA(1.28) NA(1.27) NA(0.92) NA(0.96) NA(0.95)
β32 NA(0.53) NA(0.54) NA(0.54) NA(0.20) NA(0.20) NA(0.20)

Note: NA: No results are available for these parameters.
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Table 15. Relative Bias (MSE) for Scenario I (When κ < 2).

n 100 250

Coefficients Ga(0.1, 0.1) Ga(r̂, δ̂) HC(0, 1) Ga(0.1, 0.1) Ga(r̂, δ̂) HC(0, 1)

β0 0.09(0.76) 0.09(0.75) 0.10(0.77) 0.03(0.26) 0.03(0.26) 0.03(0.26)
β1 −0.06(0.25) −0.06(0.25) −0.06(0.26) −0.02(0.08) −0.02(0.08) −0.02(0.08)
β2 −0.05(0.23) −0.05(0.22) −0.06(0.23) −0.01(0.08) −0.01(0.08) −0.02(0.08)
β3 −0.11(0.27) −0.11(0.27) −0.12(0.28) −0.03(0.11) −0.03(0.11) −0.04(0.11)
β4 −0.1(0.25) −0.10(0.24) −0.11(0.25) −0.03(0.08) −0.03(0.08) −0.04(0.08)
β5 NA(0.23) NA(0.23) NA(0.22) NA(0.10) NA(0.10) NA(0.10)
β6 NA(0.16) NA(0.16) NA(0.15) NA(0.07) NA(0.07) NA(0.07)
β7 −0.17(0.58) −0.17(0.57) −0.18(0.59) −0.06(0.19) −0.06(0.19) −0.06(0.19)
β8 −0.10(0.30) −0.10(0.30) −0.11(0.31) −0.04(0.10) −0.04(0.10) −0.04(0.10)
β9 NA(0.32) NA(0.32) NA(0.30) NA(0.17) NA(0.17) NA(0.17)
β10 NA(0.17) NA(0.17) NA(0.17) NA(0.08) NA(0.08) NA(0.08)

Note: NA: No results are available for these parameters.

Table 16. Relative Bias (MSE) for Scenario II (When κ < 2).

n 100 250

Coefficients Ga(0.1, 0.1) Ga(r̂, δ̂) HC(0, 1) Ga(0.1, 0.1) Ga(r̂, δ̂) HC(0, 1)

β0 0.07(0.49) 0.07(0.50) 0.11(0.55) 0.03(0.24) 0.04(0.24) 0.06(0.26)
β1 −0.22(0.20) −0.22(0.20) −0.33(0.23) −0.11(0.09) −0.12(0.09) −0.17(0.10)
β2 −0.18(0.19) −0.18(0.19) −0.30(0.22) −0.12(0.08) −0.12(0.08) −0.17(0.09)
β3 −0.22(0.23) −0.22(0.23) −0.34(0.26) −0.12(0.10) −0.13(0.11) −0.19(0.12)
β4 −0.21(0.21) −0.21(0.21) −0.32(0.24) −0.12(0.09) −0.13(0.09) −0.18(0.10)
β5 NA(0.19) NA(0.19) NA(0.13) NA(0.09) NA(0.08) NA(0.07)
β6 NA(0.14) NA(0.14) NA(0.10) NA(0.06) NA(0.06) NA(0.05)
β7 −0.31(0.33) −0.31(0.34) −0.45(0.35) −0.16(0.17) −0.17(0.18) −0.24(0.19)
β8 −0.23(0.23) −0.23(0.23) −0.34(0.26) −0.14(0.10) −0.15(0.10) −0.20(0.12)
β9 NA(0.21) NA(0.22) NA(0.14) NA(0.12) NA(0.11) NA(0.09)
β10 NA(0.15) NA(0.16) NA(0.11) NA(0.07) NA(0.07) NA(0.06)

Note: NA: No results are available for these parameters.

In general, RBs and MSEs when EB-GS hyper-prior is used are comparable or lower
than those when other hyper-prior distributions are used, especially when κ ≥ 2. This
implies that Bayesian lasso with EB-GS hyper-prior for the tuning parameter has improved
performancewhen the final parameter estimations are concerned for linear-circular regres-
sion models. Additionally, results show that RBs and MSEs are smaller when κ < 2 for all
methods.

5.2.2. Results in terms of variable selection
Tables 18 and 19 show the variable selectionmeasures for comparison of the Bayesian lasso
with different hyper-prior distributions for the tuning parameter.

In general, the variable selectionmeasures when EB-GS hyper-prior distribution is used
are comparable or superior than those when other hyper-prior distributions are used. This
shows that proposed strategy appears to supply a clearer distinction between significant
and insignificant covariates.With this behavior, the Bayesian lasso with EB-GS hyper-prior
supportmodelingwith appropriate dimension including only the important covariates and
identifying the best model with increased precision as sample size increases. Additionally,
results show that the variable selection measures are superior when κ < 2 for all methods.
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Table 17. Relative Bias (MSE) for Scenario III (When κ < 2).

n 100 250

Coefficients Ga(0.1, 0.1) Ga(r̂, δ̂) HC(0, 1) Ga(0.1, 0.1) Ga(r̂, δ̂) HC(0, 1)

β0 0.34(4.43) 0.33(4.34) 0.33(4.36) 0.10(0.8) 0.10(0.79) 0.10(0.80)
β1 −0.07(0.34) −0.06(0.34) −0.06(0.34) −0.02(0.10) −0.02(0.10) −0.02(0.10)
β2 −0.04(0.27) −0.04(0.27) −0.04(0.27) −0.01(0.09) −0.01(0.08) −0.01(0.09)
β3 −0.08(0.41) −0.08(0.41) −0.08(0.41) −0.02(0.12) −0.02(0.12) −0.02(0.12)
β4 −0.05(0.31) −0.05(0.31) −0.05(0.31) −0.02(0.09) −0.02(0.09) −0.02(0.09)
β5 −0.11(0.67) −0.10(0.66) −0.10(0.66) −0.04(0.20) −0.03(0.20) −0.04(0.20)
β6 −0.07(0.38) −0.07(0.37) −0.07(0.37) −0.03(0.12) −0.03(0.12) −0.03(0.12)
β7 −0.16(1.02) −0.15(1.01) −0.15(1.01) −0.04(0.23) −0.04(0.23) −0.04(0.23)
β8 −0.08(0.46) −0.08(0.46) −0.08(0.46) −0.03(0.11) −0.03(0.11) −0.03(0.11)
β9 −0.06(0.32) −0.06(0.32) −0.06(0.32) −0.02(0.09) −0.02(0.09) −0.02(0.09)
β10 −0.04(0.29) −0.04(0.29) −0.04(0.29) −0.02(0.09) −0.02(0.09) −0.01(0.09)
β11 −0.07(0.42) −0.07(0.42) −0.07(0.42) −0.03(0.12) −0.03(0.12) −0.03(0.12)
β12 −0.05(0.31) −0.05(0.31) −0.05(0.31) −0.01(0.08) −0.01(0.08) −0.01(0.08)
β13 −0.09(0.64) −0.09(0.63) −0.09(0.63) −0.04(0.17) −0.04(0.17) −0.04(0.17)
β14 −0.06(0.35) −0.05(0.35) −0.05(0.35) −0.02(0.10) −0.02(0.10) −0.02(0.10)
β15 −0.17(1.05) −0.16(1.04) −0.16(1.04) −0.05(0.23) −0.05(0.23) −0.05(0.23)
β16 −0.09(0.44) −0.09(0.44) −0.09(0.44) −0.02(0.10) −0.02(0.10) −0.02(0.10)
β17 NA(0.20) NA(0.20) NA(0.20) NA(0.08) NA(0.08) NA(0.08)
β18 NA(0.19) NA(0.19) NA(0.19) NA(0.07) NA(0.07) NA(0.07)
β19 NA(0.25) NA(0.26) NA(0.26) NA(0.08) NA(0.08) NA(0.08)
β20 NA(0.23) NA(0.23) NA(0.23) NA(0.07) NA(0.07) NA(0.07)
β21 NA(0.33) NA(0.33) NA(0.33) NA(0.12) NaN(0.12) NA(0.12)
β22 NA(0.25) NA(0.25) NA(0.25) NA(0.09) NA(0.09) NA(0.09)
β23 NA(0.44) NA(0.45) NA(0.45) NA(0.13) NA(0.13) NA(0.13)
β24 NA(0.25) NA(0.26) NA(0.26) NA(0.08) NA(0.08) NA(0.08)
β25 NA(0.18) NA(0.18) NA(0.18) NA(0.08) NA(0.08) NA(0.08)
β26 NA(0.20) NA(0.20) NA(0.20) NA(0.06) NA(0.06) NA(0.06)
β27 NA(0.23) NA(0.23) NA(0.23) NA(0.11) NA(0.11) NA(0.11)
β28 NA(0.19) NA(0.19) NA(0.19) NA(0.08) NA(0.08) NA(0.08)
β29 NA(0.37) NA(0.38) NA(0.38) NA(0.11) NA(0.11) NA(0.11)
β30 NA(0.22) NA(0.22) NA(0.22) NA(0.09) NA(0.09) NA(0.09)
β31 NA(0.48) NA(0.49) NA(0.49) NA(0.18) NA(0.18) NA(0.18)
β32 NA(0.28) NA(0.29) NA(0.29) NA(0.08) NA(0.08) NA(0.08)

Note: NA: No results are available for these parameters.

Table 18. Performances in variable selection under Scenario I–III (When κ ≥ 2).

Scenario I (ACI=3, AFE=0, CIR=1)* Scenario II (ACI=3, AFE=0, CIR=1)* Scenario III (ACI=8, AFE=0, CIR=1)*

n Measures Ga(0.1, 0.1) Ga(r̂, δ̂) HC(0, 1) Ga(0.1, 0.1) Ga(r̂, δ̂) HC(0, 1) Ga(0.1, 0.1) Ga(r̂, δ̂) HC(0, 1)

100 ACI 1.850 1.910 1.884 0.514 0.520 0.296 6.960 6.914 6.952
AFE 1.150 1.090 1.116 2.486 2.480 2.704 1.040 1.086 1.048
CIR 0.200 0.224 0.216 0.002 0.004 0.000 0.322 0.314 0.324

250 ACI 2.805 2.812 2.812 1.403 1.417 1.098 8.000 8.000 8.000
AFE 0.195 0.188 0.188 1.597 1.583 1.902 0.000 0.000 0.000
CIR 0.815 0.819 0.819 0.068 0.077 0.041 1.000 1.000 1.000

Note: *The true values of variable selection measures.

6. Applications

In this section we apply our method on two different environmental data sets. The first
data set (Section 6.1) is the air quality data set commonly used in circular literature. The
second data set (Section 6.2) concerns with factors effecting temperature in Sydney where
bush fires are regular threat.
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Table 19. Performances in variable selection under Scenario I–III (When κ < 2).

Scenario I (ACI=3, AFE=0, CIR=1)* Scenario II (ACI=3, AFE=0, CIR=1)* Scenario III (ACI=8, AFE=0, CIR=1)*

n Measures Ga(0.1, 0.1) Ga(r̂, δ̂) HC(0, 1) Ga(0.1, 0.1) Ga(r̂, δ̂) HC(0, 1) Ga(0.1, 0.1) Ga(r̂, δ̂) HC(0, 1)

100 ACI 2.926 2.918 2.924 1.396 1.426 0.918 7.998 7.998 7.998
AFE 0.074 0.082 0.076 1.604 1.574 2.082 0.002 0.002 0.002
CIR 0.926 0.918 0.924 0.102 0.102 0.058 0.998 0.998 0.998

250 ACI 3 3 3 2.658 2.686 2.514 8 8 8
AFE 0 0 0 0.342 0.314 0.486 0 0 0
CIR 1 1 1 0.686 0.712 0.592 1 1 1

Note: *The true values of variable selection measures.

Bayesian analyses of these data sets are carried out in OpenBUGS. We consider
two different chains with 1000000 updates after discarding 10000 iterations as burn-in
period. Trace plots and BGR statistic are used for convergence diagnostics and deter-
mining the burn-in period. MCMC iterations were run until MC errors based on the
Markov chain were less than 5% of the posterior standard deviations. Posterior means
(i.e. expectation of the posterior distributions) are used for estimating the model param-
eters. Finally, 95% equal-tailed posterior CI are employed as a variable selection guide.
Note that hyper-hyper priors for r and δ are specified as Ga(0.01, 0.01) in EB-GS
method.

In order to explore the performance of Bayesian lasso in terms of prediction accuracy
for linear-circular regression models, we use the root mean square errors (RMSEs) of the
fitted values. The expressions in Equation (18) can be used to calculate RMSEs

RMSE =
√√√√1

n

n∑
i=1

(yi − ŷi)2, (18)

where, n is the number of observations, yi and ŷi are the actual and predicted response
values for ith observation, respectively. Note that only significant covariates are used to
obtain predicted response values.

6.1. Air quality index data set

Herein we use the air quality index (AQI) data set to assess the performance of Bayesian
lasso in a real data application. De Wiest and Della Fiorentina [5] introduced a method
to derive air quality index and constructed a data set consisting of their air quality index
and environmental variates such as temperature, wind direction and speed. Johnson and
Wehrly [16] used a regression model based on temperature and wind direction to predict
the AQI based on their data set. Here we consider a regression model with the AQI as
the linear dependent variable, temperature (TEMP) and wind speed (WS) as linear inde-
pendent variables and wind direction (WD) as circular independent variable and apply
Bayesian lasso for variable selection. We tested the plausibility of normality assumption
for the response data. Shapiro–Wilk goodness of fit test [31] and its p-value are 0.95 and
0.54 (at significance level 0.05), respectively, implying that normal distribution seems to be
a plausible distribution for the data.

Table 20 presents results of our Bayesian lasso for AQI analysis. Bayesian lasso with non-
informative gamma (Ga(0.1, 0.1)) and EB-GS hyper-prior for the tuning parameter tend
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Table 20. Results for the AQI data set.

Ga(0.1,0.1) HC(0,1) Ga(r̂, δ̂)

Parameters Estimate MC Error 95% CI Par. Est. MC Error 95% CI Par. Est. MC Error 95% CI

Intercept 0.331(0.171) 5 ∗ 10−4 (−0.014, 0.660) 0.363(0.176) 2 ∗ 10−3 (−0.001, 0.686) 0.328(0.160) 1 ∗ 10−4 (0.006,0.642)
TEMP 0.028(0.023) 7 ∗ 10−5 (−0.016, 0.076) 0.024(0.024) 2 ∗ 10−4 (−0.016, 0.074) 0.028(0.022) 2 ∗ 10−5 (−0.015, 0.072)
WS −0.001(0.004) 8 ∗ 10−6 (−0.009, 0.006) −0.001(0.004) 1 ∗ 10−5 (−0.008, 0.007) −0.001(0.003) 2 ∗ 10−6 (−0.008, 0.006)
COS WD −0.104(0.081) 1 ∗ 10−4 (−0.273, 0.038) −0.072(0.081) 9 ∗ 10−4 (−0.254, 0.041) −0.137(0.078) 1 ∗ 10−5 (−0.294, 0.014)
SIN WD 0.164(0.081) 1 ∗ 10−4 (0.004, 0.321) 0.117(0.095) 2 ∗ 10−3 (−0.016, 0.304) 0.197(0.072) 1 ∗ 10−5 (0.052, 0.338)
σ 2 0.190(0.021) 5 ∗ 10−5 (0.020, 0.102) 0.057(0.030) 3 ∗ 10−4 (0.021, 0.132) 0.036(0.039) 2 ∗ 10−5 (0.017, 0.081)
λ 2.190(1.136) 3 ∗ 10−3 (0.572, 4.924) 14.720(47.200) 18 ∗ 10−1 (0.699, 116.400) 1.037(0.154) 3 ∗ 10−5 (0.747, 1.352)
RMSE 0.172 0.246 0.169
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to select one covariate, which is wind direction, based on 95% CIs. On the other hand,
Bayesian lasso with informative hyper-prior (HC(0,1)) for the tuning parameter tends to
select neither one. For all hyper-priors, sign of parameter estimates are consistent with
the previous analysis of this data set in the literature. Magnitude of parameter estimates
are very close to those in the previous analysis of this data set for Ga(0.1, 0.1) and EB-GS
hyper-prior. In addition,MC errors and posterior standard deviation (given in parenthesis)
measuring posterior uncertainty are generally lower for EB-GShyper-prior than the others,
especially for the tuning parameter. Note that the most important contribution of this data
analysis is to reveal the uncertainty about parameter estimation by using posterior standard
deviation. When prediction accuracy is concerned, RMSE of Bayesian lasso with EB-GS
hyper-prior is notably smaller than the others implying good prediction faculties.

6.2. Daily weather data set

The second data set has been retrieved from the data repository of Australian Bureau of
Meteorology (BOM). The data set consists of daily weather observations recorded in Syd-
ney, New South Wales between 1 November 2021 and 28 February 2022. This period is a
bush fire season in New South Wales according to BOM and thus understanding the fire
weather variables help fire prevention and control.

Herein our aim is to illustrate the use of Bayesian lasso in linear-circular regression
model for determining covariates that can be used to predict the maximum tempera-
ture which is linear response variable. Among the covariates, three of them are linear,
bright sunshine in the 24 h to midnight (SUN), fraction of sky obscured by cloud at 9 am
(CLOUD9AM) and at 3 pm (CLOUD3PM). The others are circular, direction of strongest
gust to midnight (DIRSG) and wind direction averaged over 10minutes prior to 3 pm
(DIRAV) in the 24 h. Shapiro–Wilk goodness of fit test [31] and its p-value are 0.98 and
0.16 (at significance level 0.05), respectively, implying that normal distribution seems to be
a plausible distribution for the data.

We again perform an extensive comparison of our proposed method with a variety
of hyper-priors for the tuning parameter. Hyper-priors for the tuning parameter are the
same as in Section 6.1. Extensive results are presented in Table 21. A first clear conclusion
is that the behaviors of Bayesian lasso with different hyper-priors for the tuning param-
eter are similar to each other, suggesting strength in the inclusion of DIRAV, SUN and
CLOUD9AM covariates. Another conclusion is that the Bayesian lasso with EB-GS hyper-
prior distribution for λ performs really well providing RMSE that is comparable or smaller
than the others. Note that this is a situation where prior information about the model
parameters is not available. In this case EB-GS prior is more practical.

7. Conclusion

Selection of an appropriate approximating model containing the most relevant variables is
critical to statistical inference. Current literature is abundant with variable selection meth-
ods for regression models with linear variables, but when modeling with circular variables
is of concern, these usual variable selection methods employed for linear data may not
be appropriate, situation similar to the other usual statistical tools not being suitable for
analysis of circular data.
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Table 21. Results for the daily weather data set.

Ga(0.1,0.1) HC(0,1) Ga(r̂, δ̂)

Parameters Par. Est. MC Error 95% CI Par. Est. MC Error 95% CI Par. Est. MC Error 95% CI

Intercept 17.970(2.015) 1 ∗ 10−2 (14.000, 21.930) 18.170(2.041) 1 ∗ 10−2 (14.170, 22.190) 18.300(2.046) 1 ∗ 10−2 (14.270, 22.330)
COS DIRAV 2.071(0.606) 1 ∗ 10−3 (0.868, 3.256) 1.971(0.623) 2 ∗ 10−3 (0.7156, 3.175) 1.555(0.619) 1 ∗ 10−3 (0.136, 2.974)
SIN DIRAV −0.246(0.451) 1 ∗ 10−3 (−1.179, 0.616) −0.240(0.431) 9 ∗ 10−4 (−1.145, 0.5774) −0.235(0.411) 9 ∗ 10−4 (−1.110, 0.536)
COS DIRSG 0.183(0.512) 1 ∗ 10−3 (−0.815, 1.256) 0.204(0.494) 1 ∗ 10−3 (−0.752, 1.250) 0.218(0.473) 1 ∗ 10−3 (−0.683, 1.242)
SIN DIRSG −0.666(0.474) 1 ∗ 10−3 (−1.627, 0.198) −0.614(0.464) 1 ∗ 10−3 (−1.574, 0.203) −0.575(0.452) 1 ∗ 10−3 (−1.524, 0.206)
SUN 0.495(0.145) 8 ∗ 10−4 (0.211, 0.779) 0.482(0.146) 8 ∗ 10−4 (0.194, 0.769) 0.474(0.145) 8 ∗ 10−4 (0.185, 0.762)
CLOUD9AM 0.514(0.177) 7 ∗ 10−4 (0.168, 0.863) 0.491(0.181) 8 ∗ 10−4 (0.133, 0.846) 0.475(0.174) 8 ∗ 10−4 (0.109, 0.833)
CLOUD3PM −0.031(0.169) 7 ∗ 10−4 (−0.369, 0.304) −0.034(0.167) 7 ∗ 10−4 (−0.368, 0.295) −0.036(0.166) 6 ∗ 10−4 (−0.369, 0.294)
σ 2 7.415(1.180) 2 ∗ 10−3 (5.456, 10.060) 7.545(1.224) 3 ∗ 10−3 (5.522, 10.300) 7.660(1.162) 2 ∗ 10−3 (5.581, 10.500)
λ 3.017(1.056) 2 ∗ 10−3 (1.281, 5.370) 3.940(1.888) 1 ∗ 10−2 (1.406, 8.549) 4.743(1.537) 1 ∗ 10−3 (1.639, 10.480)
RMSE 2.701 2.740 2.695
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The aim of this article was to initiate a work on Bayesian penalization techniques such
as the Bayesian lasso for variable selection in linear-circular regression models to improve
the prediction ability of the model and reduce model complexity. In this article, we pro-
pose an adaptation of the Bayesian lasso for this purpose and develop a novel hyper-hyper
parameter elicitation for the tuning parameter, when a gamma prior is used as hyper-
prior distribution. Based on simulations and empirical results, we highlight the following
attractive properties.

• Our adaption with EB-GS hyper-prior distribution for λ performs satisfactorily as vari-
able selection method identifying parsimonious models. It select parsimonious models
of appropriate dimension by excluding the insignificant covariates and including the
significant covariates.

• Our method seems to provide a clearer distinction between important and non-
important covariates than the Bayesian lasso with usual hyper-prior distribution for
λ.

• Another important characteristic of our proposed method is that it is sufficient to give
just non-informative hyper-hyper prior distributions for hyper-parameters, i.e. r and δ.

• Real life examples show that our proposed method has smaller RMSEs and MC errors
than conventional hyper-prior distributions.

• Results demonstrate that our proposed method has the better performance in terms of
variable selection, parameter estimations andprediction accuracy thannon-informative
gamma and informative HC distributions.

• The adaptation of Bayesian lasso can straightforwardly be implemented by using a
simple Gibbs sampling procedure for linear-circular regression models.

To conclude, our adapted Bayesian lasso method for linear-circular regression models
works efficiently and the EB-GS hyper-prior is promising for choosing hyper-hyper param-
eter for the λ. Finally, the proposed EB-GS hyper-prior is general and can be used to select
hyper-hyper parameters in other hyper-prior such as HC prior.

As a possible avenue for future work, it would be interesting to apply our proposed
method for circular-circular or circular-linear regression models. Such an investigation is
currently under investigation.
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