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Abstract

In this article, we introduce a flexible cylindrical distribution for modeling and analysis
of dependent extremal and directional observations. The distribution can be used to
investigate the connection between two related phenomena, such as the daily fastest
wind speed and its direction. The proposed model is applicable for the analysis of a
wide variety of cylindrical data, including datasets with asymmetrically distributed
directional observations. The model enjoys the advantages of interpretable model
parameters, known marginal and conditional distributions, and a practical test for
independence. Our simulation study shows that maximum likelihood estimators of
the model parameters maintain desired finite sample properties. The distribution is
then used to characterize the joint behavior of atmospheric variables in the context of
wildfires or bushfires.

Keywords Gumbel distribution - Von Mises distribution - Copula - Wind direction -
Maximum temperature - Bushfire simulation

1 Introduction

Circular-extremal data are observations that consist of a circular and an extremal

component. Circular data are observations that can be regarded as points on a circle of
unit radius. They include observations measured by compass such as wind directions,
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directions of sea currents, and orientation of migratory birds or observations measured
by clock such as time of the day and month of the year. Extremal data mostly occur
as a result of extreme environmental and atmospheric events, e.g. maximum wind
speed, maximum precipitation, and maximum rainfall. There are several examples for
dependent circular-extremal events such as extreme wind speed and wind direction
(Coles and Walsaw (1994)), wave-induced extreme water level and wave direction
(Coles and Walsaw (2016)), extreme groundwater level and time (Yozgatligil and
Turkes (2018); Collet et al. (2017)). The specific example we focus on in this study is
the speed and direction of the fastest gust as well as daily maximum temperature and
morning wind direction, the main meteorological characteristics used in Australian
fire spread simulation models.

Cylindrical distributions are used to model bivariate data with a linear and a circu-
lar component (Mardia and Sutton (1978); Johnson and Wehrly (1978); Abe and Ley
(2017)). When the linear part is extreme value, modeling exerts the use of a cylindrical
distribution function with extreme value marginal. In this paper, we propose a novel
cylindrical distribution for modeling and analyzing data with an extremal and circular
component. Our distribution is based on a combination of Gumbel distribution and
sine-skewed von Mises distribution and denoted by GSSvM. Gumbel distribution is
also called Type I Extreme Value distribution and is frequently applied for the analysis
of extreme values observed in various research areas such as earth sciences, environ-
mental sciences, geological sciences as well as economics, finance, and insurance.
Efficient joint modeling of circular and extremal data depend on cylindrical distribu-
tion that is flexible enough to account for different distributional shapes and degree of
dependencies. Another desired property for an efficient cylindrical distribution is that
the conditional and/or marginal probability density functions have known forms.

Our proposed distribution accounts for a wide variety of dependencies and shapes.
The real benefit is that it can be used to reveal general characteristics of the correlated
linear-circular data, such as the mean direction of animal orientation given extreme
climatic conditions. The rest of the article is organized as follows. Section 2 gives
the specification of our distribution and its properties. Parameter estimation is given
in Section 3. A simulation study illustrating the finite sample performances of the
estimators is given in Section 4. Our model is then applied in Section 5 to characterize
the joint behavior of meteorological extremes and wind direction in the context of
Australian bushfires. Finally, section 6 gives concluding remarks and a critique.

2 GSSvM model and its properties

Our distribution is based on the family of maximum entropy distributions introduced
by Johnson and Wehrly (1978). In their seminal article, they give a general method
that is based on copulas to obtain circular-linear distributions with specified marginals.
Their method is further generalized by the inclusion of an index for the direction of
the dependence between the circular and the linear variates, and also used in modeling
multi-modal cylindrical time series data (Lagona (2019)). Here we initially consider
their copula based construction with marginals specified as von Mises and exponential
distributions and extend it to develop a more flexible cylindrical distribution that is
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specifically designed to fit cylindrical data where one of the components is extremal
variable, and the other one is circular. Our approach is based on perturbing the dis-
tribution of the circular component of Johnson-Wehrly construction and transforming
the exponential component. A perturbation is applied on the circular part to sine-skew
von Mises distribution with mean © and concentration « via multiplication with the
term (1 + Asin(@ — w)) for A € [—1, 1] following Abe and Pewsey (2011). This
adjustment allows the analysis of symmetric as well as asymmetric distributions using
the model given in (1). For the exponential part, we consider the following transfor-
mation. Let Y = a — b~ log(Xb) where X ~ Expo(1),a € R and b > 0 are some
constants and log is natural logarithmic function. Resulting ¥ has a Gumbel distribu-
tion, i.e. Y ~ Gumbel(a, b_l) where a and b~! are location and scale parameters
respectively. This altogether leads to a more flexible model, as seen in later sections
that is specifically designed to analyze a wide variety of extremal data that co-occur
with circular data in nature. Letting (®,X) and (6,x) denote the circular and extremal
random variables and their realized values respectively, formal definition of GSSYM
is given below.

Definition 2.1 A random cylinder (®,X) is said to follow the GSSvM distribution, if
its density is given by

fO,x) = L(l + Asin(@ — p)) exp[—(x — a)B(1 — tanh(x) cos(6 — w))]
27 cosh(x)
x exp[—exp[—(x —a)B(1 — tanh(x) cos(6 — w))ll (1)

where —7m < 6 < 7w, x € R, -7 < u < m, a = 0 for identifiability, « > O,
B > 0,1 € [—1, 1], and cosh and tanh are hyperbolic cosine and hyperbolic tangent
functions respectively.

The distribution has four parameters where (u,k,A) are associated with the circular
variate and S is associated with the extremal variate. i, ¥ and A are respectively circular
location, concentration and skewness parameters while g is linear scale parameter. The
parameter « also accounts for the dependence between ® and X, they are independent
if k = 0 in which case the joint density is the product of Gumbel and Cardioid
densities. For k and A both equal to zero, the joint density is the product of Gumbel
and circular uniform densities. The two dimensional contours of GSSvM distribution
are given in Fig. 1 for different values of « and A illustrating various shapes of the
model. Further properties are given in following sections.

2.1 Marginal distributions

Proposition 2.2 Let (©, X) follow GSSvM with pdf given in (I1). Then circular
marginal pdf, i.e. pdf of ®, and marginal pdf of X are given respectively by

B (1 4 Asin® — )
fo(0) = 27 cosh(k ) (1 — tanh(x) cos(d — 1)) ?

@ Springer



Environmental and Ecological Statistics

x1.)=(0.0 x})=(005
| | :
T T T T
-0 0 o 2 0 ©

0

Direcion
0

Direchon
Direchon

clon
clen
clon

Dire
Dire

clan

Oirechon

Direchon
Dire

Fig.1 Contour of GSSvM(u = 0,«,8 = 2,1) distribution with various « and A values.

which is the sine-skewed wrapped Cauchy (wC) distribution given by Abe and Pewsey
(2011), and

BAY(B")

exp[—pBx]exp[— exp[—pBx]] (3)
cosh(k)

fx(x) =
where B* = xptanh(x) and Ao(B*) is the normalizing constant that is defined
in Proposition 2.4. Note that the marginal distribution of X simplifies to Gumbel-
maximum for k = 0.

Proof of (2) follows from integrating (1) with respect to x and the fact that
ffooo bexp[—bx]exp[— exp[—bx]]ldx = 1 where b = B(1 — tanh(x) cos(@ — w)).
Proof of (3) is given as follows. Integrating GSSvM pdf with respect to 6 leads to

*

fx(x) = exp[—px]exp[— exp[—px]] (4)
cosh(k)
* (1 4+ Asin(@ — w))h(0)do
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where h(9) = %exp[—ﬁ* cos(@ — w)]exp[—exp[—pB*cos(@ — w)]]. Define

g0: B*, ) = Wh(@). Note that g(6; f*, 1) > 0is periodic and [*_g(6; p*, p)
d6 = 1 and therefore it is a circular pdf. Hence by Abe and Pewsey (2011), the pertur-
bated version, i.e. (1 + A sin(6 — u))g(0; B*, ) is a sine-skewed circular pdf. Then
the integral in (4) is unity and completes the proof.

2.2 Conditional distributions

Proposition 2.3 Conditional distribution of ®|X = x is given by the following pdf

1+ Asin(@ — )
2w Ap(B*)
x exp[— exp[—B* cos(@ — w)]] 5)

feix(@lx) = exp[B” cos(0 — )]

which follows from (1) and (3), and conditional distribution of X|® = 0 is Gumbel —
max (0, b~ 1) with the following pdf that follows from (1) and (2)

fxje(x|0) = bexp[—bx]exp[— exp[—bx]] (6)

where b = B(1 — tanh(x) cos(6 — w)).

Note that, we use the notations b and B8* to reparameterize the distributions of X
and 6 respectively. Here, b is a function of (8, k, ;) whereas 8* is a function of (8, k).

2.3 Normalizing constant

Proposition 2.4 The normalizing constant is given by
l T
Ap(z) = Z/ exp[z cos(#)] exp[— exp[z cos(6)]]d6 )
—TT

The proof follows from Fourier transformation of a periodic and real analytic
function. Let —7 < o < 7 and z € R. We define h(wo, z) = exp[zcos(x)]exp[—
exp[z cos(a)]]. Then h (e, z) is a bounded, periodic and real analytic function in o and
z and its Fourier series representation is

h(a,7) = Z A, (2) cos(na) + Z By (2) sin(ma)
n=0 m=0

where

Ay(2) = % /ﬂ h(o, z) cos(na)do

By (z) = % /ﬂ h(a, z) sin(ma)da
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forn,m = 0,1,2,.... Since h(—a, z) = h(a, z) and sin(ma) is an odd function,
B,(z)=0Vm=0,1,2,....
Note that fora = 6 — p,

1 T+
An(2) = o h(@ — i, z)cos(n(® — w))do
—T4p
1 s
= — exp[z cos(0 — )] exp[— exp[z cos(d — )]l cos(n(0 — w))do
21 Jgin

and h(@ — u,z) = Z;’;O Ay (z) cos(n(@ — p)). The normalizing constant, Ag(z), is
the order zero of this Fourier expansion.

2.4 Moments

Lemma 2.5 below gives a compact form for moments of general Gumbel —
max(a, b_l) distribution. Then, it is used in Proposition 2.6 to construct moments
of the GSSvM distribution.

Lemma2.5 Let X ~ Gumbel — max(a,b~') where Gumbel — max is Gumbel-
maximum distribution. Then the nth. moment of X, i.e. E(X™), is given by

Exh =Y (Z)WF (1 + é) a"k

k=0

k
which is evaluated att = 0, where I (.) is Gamma function and %F (1 + l’—)) = %

att = 0 where U ~ Gumbel — max (0, 1).

Proof is given as follows. Note that moment generating function (mgf) of Gumbel-
maximum distribution is M (t) = I (1 + %) e . The nth moment can be written in a

compact form as follows. Let D = %, (D+a)= % +a,and (D +a)w =w' +aw
where w(.) is a function of ¢t and (D + a) is a convolution applied on w. Then

D" = L and (D + ay"w(n) = Yo (1) Lew(@)a* where DO = 45 = 1. Now,
let w() =T (1 + %) Then, the mgf is M (t) = w(z)e®. Then, first two derivatives
of mgf are LM (1) = (D + a)w(t) and j—;M(z) = ¢ [(D + a)*w(t)] which
generalizes to %M (t) = " [(D + @)"w(1)]. Then the result is straightforward.

Proposition 2.6 Let (®, X) follow the GSSvM distribution with pdf given in (1). Then
the joint moments are given by

E(X" cosm8) = W, I} (cosh k) ®)
and

A
E(X" sinm0) = an(lf”(cosh i) — 1" (cosh i) 9)
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where
1 [0 cosmb
I™(coshk) = — / o do
7T J-x (coshk — +/cosh? k — 1 cos)r+!

and W, = mh%w where U ~ Gumbel — max (0, 1) forn,m =0, 1, ---.

Proof follows from Lemma 2.5 and the identity (1 — tanhkcosf) =
coshic—n/cosh? k-1 cost ;g i straightforward. The integral, I, (cosh k), can be satisfac-

cosh k
torily approxunated by Monte Carlo integration for 1ntermed1ate values of k (k <5),
larger number of iterations is needed for k > 5. Marginal linear and trigonometric kth
moments, i.e. E(X*), E(sink6) and E(cos k6), are also obtained from equations (8)

and (9).

3 Parameter estimation and test for independence

The natural logarithm of the GSSvM likelihood function, £(8, u, «, 1), is given below
to guide likelihood based inference.

LB, u, k, )) xn(log(B) —log(2m coshk)) — in,B(l — tanh k cos(6; — w))
i=1

n n
— Z exp[—x; 8(1 — tanh x cos(6; — )] + Z log(1 + A sin(6; — w))
i=1 i=1

Model parameters are easily estimated via maximum likelihood technology, score
functions are given below.

n
Sp = % — 3" xi(1 — tanh i cos(6; — )
i=l1

+ Zexp[—xiﬁ(l — tanh k cos(6; — ))]x; (1 — tanh « cos(6; — w))1g(0, 00)
i=1

_ _'Z Acos(6; — )

n
— 1+ sin@; — ) 42 tanh x sin@ — 0

i=1

— Z exp[—x; B(1 — tanh k cos(6; — w))]x; B tanh k sin(0; — w) I, [—m, 7]
i=1

n
Sy = —ntanhk + 8 in cos(f; — w)(cosh /<)_2
i=1
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Table 2 Bias(MSE) of estimators. True k = 1.

A n B m K A

-1 100 0.1457(0.0994) —0.0324(0.0067) 0.0269(0.0099) 0.0752(0.0100)
250 0.0559(0.0279) —0.0163(0.0023) 0.0109(0.0036) 0.0365(0.0022)
500 0.0300(0.0126) —0.0089(0.0010) 0.0069(0.0018) 0.0217(0.0008)
1000 0.0182(0.0061) —0.0058(0.0005) 0.0039(0.0008) 0.0134(0.0003)

—-0.5 100 0.0743(0.0617) —0.0027(0.0081) 0.0096(0.0081) 0.0011(0.0318)
250 0.0300(0.0215) —0.0017(0.0029) 0.0041(0.0032) 0.0001(0.0115)
500 0.0133(0.0100)  0.0005(0.0014) 0.0016(0.0016)  0.0004(0.0058)
1000 0.0066(0.0049) 0.0000(0.0007) 0.0008(0.0008) —0.0009(0.0028)

0 100 0.0659(0.0535) 0.0016(0.0078) 0.0063(0.0079) —0.0036(0.0349)
250 0.0227(0.0182) —0.0007(0.0030) 0.0014(0.0029) 0.0007(0.0143)
500 0.0112(0.0086) 0.0003(0.0014) 0.0013(0.0015) —0.0004(0.0071)
1000 0.0059(0.0043) 0.0003(0.0007) 0.0008(0.0007) —0.0017(0.0036)

0.5 100 0.0691(0.0590) 0.0019(0.0080) 0.0079(0.0083) —0.0023(0.0339)
250 0.0283(0.0208) 0.0015(0.0029) 0.0037(0.0032) —0.0035(0.0115)
500 0.0138(0.0101) 0.0011(0.0014) 0.0017(0.0016) —0.0018(0.0057)
1000 0.0064(0.0047) 0.0001(0.0007) 0.0009(0.0008) —0.0009(0.0029)

1 100 0.1433(0.0961) 0.0343(0.0067) 0.0268(0.0096) —0.0740(0.0095)
250 0.0581(0.0289) 0.0150(0.0022) 0.0115(0.0035) —0.0364(0.0022)
500 0.0307(0.0130) 0.0087(0.0010) 0.0065(0.0018) —0.0217(0.0008)
1000 0.0158(0.0060) 0.0052(0.0005) 0.0028(0.0008) —0.0134(0.0003)

— Zexp[—xiﬁ(l — tanh k cos(6; — w))]x; B cos(6; — u)(cosh K)_le(O, 00)

i=1

i=1

sin(0; — 1)
S, = N
- Zl—l—ksin(ei—u)

Li[—-1,1]

(10)

where I denotes an indicator function for the parameter space of interest. Letting
SB, i, A) = (Sg, Sps Sk, $;)T, maximum likelihood estimators (MLEs) of the
parameters are obtained as a solution of S(B, u,«,A) = 0. Numerical methods
are required to solve the score equations as closed form solutions are not avail-
able. We used the gbnm function in Matlab performing globalized Nelder-Mead
method (Luersen and Le Riche (2004)). One can also use optimx package in R that
performs constrained optimization (Nash and Varadhan (2011)). Letting €2 denote
the parameter vector, asymptotic standard error estimates of MLEs are computed
from iT_ 1(Q) where I7 is the estimator of the total information matrix and given by

Yy o5 log f (6. xi) 527 log f(6;. x;).
Dependence of circular and extremal random variables can easily be investigated

through testing the null hypothesis Hy : « = 0 versus the alternative H; : k > 0
thanks to the philosophy of proof by contradiction. We recommend, in this context,
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Table 3 Bias(MSE) of estimators. True k = 2.

A n B m K A

-1 100 0.1089(0.0793) —0.0082(0.0007) 0.0175(0.0081) 0.1145(0.0221)
250 0.0424(0.0263) —0.0038(0.0002) 0.0065(0.0032) 0.0583(0.0057)
500 0.0217(0.0122) —0.0024(0.0001) 0.0035(0.0016) 0.0381(0.0024)
1000 0.0118(0.0058) —0.0015(0.0001) 0.0020(0.0008) 0.0235(0.0009)

—-0.5 100 0.0809(0.0666) —0.0014(0.0007) 0.0097(0.0077) 0.0102(0.0426)
250 0.0290(0.0227) 0.0001(0.0003) 0.0031(0.0030) —0.0002(0.0185)
500 0.0153(0.0108)  —0.0002(0.0001)  0.0020(0.0014)  0.0012(0.0093)
1000 0.0074(0.0053) —0.0002(0.0001) 0.0005(0.0007) —0.0006(0.0046)

0 100 0.0767(0.0671) 0.0005(0.0007) 0.0094(0.0077) —0.0040(0.0561)
250 0.0318(0.0223) —0.0002(0.0003) 0.0049(0.0030) 0.0010(0.0235)
500 0.0149(0.0105) 0.0001(0.0001) 0.0019(0.0014) —0.0014(0.0107)
1000 0.0063(0.0051) 0.0000(0.0001) 0.0005(0.0007) 0.0011(0.0058)

0.5 100 0.0783(0.0686) 0.0010(0.0007) 0.0102(0.0078) —0.0029(0.0457)
250 0.0300(0.0226) 0.0006(0.0003) 0.0034(0.0030) —0.0032(0.0188)
500 0.0155(0.0108) 0.0002(0.0001) 0.0020(0.0015) —0.0007(0.0090)
1000 0.0073(0.0053) 0.0001(0.0001) 0.0005(0.0007) —0.0002(0.0045)

1 100 0.1023(0.0775) 0.0079(0.0007) 0.0159(0.0080) —0.1174(0.0232)
250 0.0453(0.0265) 0.0038(0.0003) 0.0071(0.0031) —0.0613(0.0063)
500 0.0232(0.0116) 0.0024(0.0001) 0.0038(0.0015) —0.0374(0.0023)
1000 0.0125(0.0058) 0.0014(0.0001) 0.0025(0.0007) —0.0228(0.0009)

permutation based likelihood ratio test for sample sizes less than n < 100 and asymp-
totic chi-square test otherwise. Let Tr g denote the likelihood ratio test statistic and
Trg = —2(L(B, 1, &, %) — L(B, i1, 0, 1)) where (B, [, &, \)T and (B, 1, »)T are the
vectors of MLEs over the global and Hp—restricted parameter spaces respectively.
Distribution of 77, g can be obtained via permutation method when 7 is not sufficiently
large and p value is calculated as the proportion of the upper tail with respect to the
observed test statistic.

4 Simulation study

In this section we conduct a comprehensive simulation study to investigate the per-
formance of the maximum likelihood estimation for GSSvM distribution. In our
experiment, we create cylindrical datasets with various different symmetry. The
data are generated from the GSSvM distribution as follows. First, sine-skewed cir-
cular observations {6;}"_, are generated from the marginal pdf given in (2) as
follows: 6; = 671(U; < v) + 671(U; > v) where 67 ~ wC(u, tanh(k/2)),
Ui ~ Uniform(0,1), v; = (1 + )»sin(@i* —w)/2fori = 1,2,---,n,and [
is indicator function, where this scheme follows from Abe and Ley (2017). Then,
extremal observations {x;}!_, are generated from the conditional pdf given in (6):
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Fig.2 The scatterplot of fastest wind speed and directions and contours of the fitted GSSvM.

xi ~ Gumbel — max(0,b") where b = B(1 — tanhk cos(§; — w)). We con-
sider moderate to large samples (n=100,250,500,1000); various degrees of skewness
(A =0,0.5, 1); various degrees of concentration parameters (x = 0, 1, 2) where 0 is
included to represent independent circular and extremal components. In the simula-
tions, 8 = 2 and u = 0 without loss of generality. We initially repeated the experiment
with different values for 8 and observed that the results remain the same.

The bias and mean squared errors (MSE) of the estimators are given in Tables
1-3. Accordingly, the overall performance is excellent. Specifically, the bias and MSE
decreases with sample size, and they are higher for A values that are close to the
boundaries. Bias and MSE of A estimation increase with «.

5 Real data applications

In this section we utilize GSSvM to analyze two datasets that are publicly available at
data repository of Australian Bureau of Meteorology (BOM). The first dataset consists
of daily fastest wind gust and its direction recorded between 1 November 2020 and 28
February 2021 in Melbourne Olympic Park while the second dataset consists of daily
maximum temperature and morning wind direction during the same time period and
on the same site (n=116 excluding observations with missing wind direction). This
period is over the summer months in the Southern Hemisphere and includes the peak
bushfire seasons, the most destructive type of wildfire in Australia. These variables
play important role in bushfires and their management. Their analysis provides input
for bushfire simulation and risk models (see e.g. Lopes et al. (2002); Coen (2005);
Sharples et al. (2010) for wildfire simulation models).

We illustrate the fitting performance of GSSvM in relation to the independence
model and the Abe-Ley model (Abe and Ley (2017)). Abe-Ley model is based on
a combination of sine-skewed vM distribution and Weibull distribution. As Weibull
distribution is also an extreme value distribution, Abe-Ley model can be considered
as an alternative for modeling cylindrical data consisting of extremal and circular
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Fig.3 The scatterplot of daily maximum temperature and wind direction at 9am and contours of the fitted
GSSvM.

components. We use the Akaike Information Criterion (AIC) to compare the fitness
of the models. In the following tables, the parameters of Abe-Ley distribution are
indexed by AL.

5.1 Fastest wind gust and the direction

To analyse the dataset, angular direction data are transferred to radian. Wind speed
data are transferred prior to applying GSSvM with a = 0. The scatterplot of the fastest
wind gust versus their direction along with contours of the fitted GSSvM are given in
Fig. 2. The scatterplot somewhat suggests an association between the two variables:
concentration around a particular direction seems to increase with extrema of the gust,
implying that minimum or maximum gust speed is associated with its direction.

Table 4 presents the parameter estimates and fitting capacities (AICs) of the com-
peting models considered for this dataset, namely GSSvM and Abe-Ley. They lead
to a somewhat similar location, concentration, and skewness estimates. Comparing
the AICs of the models, we can see that GSSVM improves on the Abe-Ley model.
The independence model is fitted to test the dependence between the two variables.
The independence model is fitted by fitting GSSvM with ¥ = 0. Maximum for inde-
pendence model occurred at A = 0 for this dataset rendering the ASEs of u and A
inestimable under independence assumption. Asymptotic likelihood ratio test implied
strong dependence (p-value=0.00).

As conclusion, GSSvM seems to be a good fit for this dataset which in turn implies
that it can be utilized for joint random generation of gust wind and direction obser-
vations in wildfire simulation models that are used to predict bushfire risks under
different meteorological conditions.

5.2 Morning wind direction and maximum daily heat

For the analysis of this dataset, which consists of daily maximum temperature and
wind directions at 9am, angular directions are first obtained from the original cardi-
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nal directions and converted to radians. The scatterplot of the observations and the
fitted GSSvM contours are given in Fig. 3. The figure suggests that maximum daily
temperature changes with the direction of the wind at 9am.

Table 5 presents the parameter estimates and fitting capacities (AICs) of the com-
peting models considered for this dataset. GSSvM and Abe-Ley are comparable. As a
side note, the maximum for independence model occurred at 1. = O for this dataset ren-
dering the ASEs of 1« and A inestimable under independence assumption. Asymptotic
likelihood ratio test for independence, Hy : « = 0, gives p-value = 0.00 indicating
highly significant dependence between daily maximum temperature and direction of
the wind at 9am in Melbourne over the span of November 2020-February 2021. Con-
tours of the fitted GSSVM given in Fig. 3 seem to show a satisfactory fit well capturing
the observations. Furthermore, based on these findings, it can be inferred that GSSVM
or equivalently Abe-Ley model can be used in wildfire simulations to model wind
direction and extreme heat, two atmospheric conditions that affect fire behavior.

6 Future research

In this paper, a cylindrical distribution was proposed for modeling dependent extremal
and circular data. The distribution is constructed based on Gumbel distribution, and a
sine skewed circular distribution. The proposed distribution is quite versatile, as shown
in sections 2 and 5. The model also accounts for any asymmetric feature present in
the circular observations. Maximum likelihood estimation of the model parameters is
straightforward, and readily available optimization algorithms with box constraints in
standard statistical software can be used. MLEs are shown to maintain excellent bias
and MSE properties. Also, as seen in Section 5, this model is shown to be particularly
beneficial in the case of bushfire risk modeling as it provides a method to simulate
dependent meteorological cylindrical variables.

In this paper, we focused on fitting the distribution only, while regression models,
mixture models, prediction, and temporal or spatial dependence will be interesting
future work. Mixture of GSSvM densities can be considered to analyze spatially
or temporally correlated cylindrical series following Lagona and Picone (2016) and
Ranalli et al. (2018) or Lagona (2019), respectively. Also, we think that our approach
can be generalized on the extreme value component of the distribution by considering
Kumaraswamy generalized extreme value distribution (Eljabri and Nadarajah (2017))
and this will be undertaken elsewhere.

The normalizing constant in our model is worthy of notice. Notice that it is different
than the usual normalizing constant appearing in most circular densities, which is based
on the Bessel function. It would be very interesting to know whether A here appear
to be an analytic solution of a second order differential equation, such as Bessel or
Legendre functions.
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